Tag Archives: science

Walking to Pluto, Step 4

Published by:

Step 4:  Go Farther

Pluto & Charon in Full Color (Image Credit:  NASA)

Pluto & Charon in Full Color (Image Credit: NASA)

New Horizons has flown past Pluto successfully, and is now on the way to check out other Kuiper Belt objects.  Here’s Corwin Wray’s simulation (made with Pixel Gravity, his software for doing multi-body models on your laptop), which concludes with a wistful look back at our Solar System:

 

Like New Horizons, you can explore further too.

It’s worth your while to start by tracking down Guy Ottewell. Yes, he’s on the web, folks, and you can connect with him! Start with his Home Page, which includes all of his books, including the latest version of the book form of his Thousand-Yard Model as well as innovative ideas in several fields, from voting systems to landscape design:    He has a Facebook Page on which he’s been more active as of 2014, sharing art and world news:    And he joined Twitter in 2013 and tweets regularly, especially on human-rights topics, which should interest anyone who’s become aware of just how small our human community is in this huge universe: find him as simply @GuyOttewell on the tweet machine.  A few of his books are available at Amazon, but take care—the latest updates are best obtained by purchasing directly from the author.

 

Of course, you might want to follow some of informational links given in the workbook pdf’s for this project:

For more information on both the inner and outer planets: http://solarsystem.nasa.gov/planets/charchart.cfm

For more information on the asteroid belt:   http://solarsystem.nasa.gov/planets/profile.cfm?Object=Asteroids&Display=OverviewLong

For more on Kuiper-belt objects and Pluto:   http://solarsystem.nasa.gov/planets/profile.cfm?Object=KBOs and also http://solarsystem.nasa.gov/planets/profile.cfm?Object=Dwarf

And of course we have an active mission beyond Pluto right now.  It’s an APL project, so they have a great page on the program:  http://pluto.jhuapl.edu/

Read about the Pioneers’ adventures here http://www.nasa.gov/centers/ames/news/2013/pioneer11-40-years.html#.UzDJ44WwX_0 and here http://www.nasa.gov/topics/history/features/Pioneer_10_40th_Anniversary.html#.UzDKb4WwX_0

Discover more about the Voyager missions at: http://voyager.jpl.nasa.gov/where/index.html

And find out where all the system-leaving spacecraft—as well as Earth-orbiting satellites, the planets, and other system objects–are right now: http://www.heavens-above.com/SolarEscape.aspx?lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT

For more on the Oort cloud, see http://solarsystem.nasa.gov/planets/profile.cfm?Object=KBOs

 

Lots of other interesting links:

The National Optical Astronomy Observatory presents Guy Ottewell’s original project description from 1989 online:

A wonderful collection of poems and quotes related to astronomy, gathered by Michele Stark, an astronomer with a wonderful page she created while lecturing in physics at the University of Michigan, Flint. l  You’ll also find astronomy labs she’s created for non-majors interested in the field, under “Outreach and Education

A relatively exhaustive listing of scale models in place around the world—most are designed for point-to-point driving or cycling tours, so scroll to the bottom portion of the list for walkable models, several of which are roughly on the same scale as that presented here. Check before you set out—some of these installations were only temporary, as part of larger events and some are virtual (i.e., online). I would like to imagine astronomy fans travelling to all of them, as baseball fans travel to all the major-league parks.

The National Center for Earth and Space Science’s “Voyage” program has a “somewhat” pricier scale model in Washington D.C. but also offers up lots of useful curriculum materials:   http://voyagesolarsystem.org/   Their program is fee-based, not by any means free, but it is very comprehensive and aims to involve parents, teachers, students, and their communities: http://journeythroughtheuniverse.org/home/home_default.html

You can keep track of the Voyager spacecraft in real time at http://voyager.jpl.nasa.gov/where/index.html   They’re in rapid motion—Voyager 1 is travelling at over 38 thousand miles per hour (over 17 km per second).

All about the sun (with a wonderful NASA graphic of a solar flare compared with the Earth): http://www.universetoday.com/94252/characteristics-of-the-sun/

A summary page on the Peppercorn Model at SpyHill Research, which also includes some links to interesting places: http://www.spy-hill.net/myers/peppercorn/

Why isn’t an AU exactly the same as Earth’s orbit any more? Sorry academics, the best answer is in Wikiland: http://en.wikipedia.org/wiki/Astronomical_unit

More about our Moon: http://www.universetoday.com/19677/diameter-of-the-moon/ By the way, Universe Today is a good site to follow!

Asteroid information for Wiki fans: http://en.wikipedia.org/wiki/Asteroid_belt

The Project Astro Notebook used to be sold as a huge expensive bulky (and still wonderful) binder. Soon, you’ll be able download at least some portions in pdf format from the free government-sponsored education resources site eric.gov. However, for now your best bet is to buy the DVD’s at http://astrosociety.org/astroshop/index.php?p=product&id=577&parent=1

While you are waiting for your DVD to arrive, the Astronomical Society of the Pacific has a page full of resources for you, including a few of the Project Astro activities. http://www.astrosociety.org/education/astronomy-resource-guides/

If you actually need to shop for marbles, by all means the best place for working on this project would be “Moon Marbles”, at http://www.moonmarble.com/c-78-shooters-approx-19mm-or-34.aspx

Astronomer Phil Plait summarizes the latest estimates on stars with planets beyond our own system: http://www.slate.com/blogs/bad_astronomy/2013/11/04/earth_like_exoplanets_planets_like_ours_may_be_very_common.html

Why use a FIFA 4 or 5 ball? Well, the dimensions are good for it. But any similar-sized ball will do for this project…like the tennis-ball-patterned playground ball I have.  Guy Ottewell likes to use a bowling ball—but notes that it’s kind of heavy to lug around. http://www.achallenge.com/t-faq.aspx

A seemingly unrelated topic—watching for the bright flare of reflected sunlight from certain Earth-orbiting satellites: http://www.washingtonpost.com/wp-srv/washtech/features/iridiumqa.htm The interviewer on that page is talking to Chris Peat, whose website contains a wealth of information on satellites, the solar system, and the positions of the Pioneer and Voyager spacecraft. http://www.heavens-above.com/?lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT

Just to show how established walkable solar system models have become, here’s a typical promotion for a talk by Eric Myers of SUNY (see the GoogleMaps list below) and another talk summary that may inspire you to think about other ways of building a model https://nightsky.jpl.nasa.gov/event-view.cfm?Event_ID=44693   and http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=0CGcQFjAG&url=http%3A%2F%2Fregionalaaptmeeting2013.weebly.com%2Fuploads%2F2%2F2%2F9%2F3%2F22939768%2Faapt_meeting.docx&ei=jaU5U5rvCqiIyAGK0YHwBw&usg=AFQjCNHl4_6jyF2UU_JJ7H9SrD6suXOhjA&sig2=MBKeDxFBGjHlVB2rk8n3wA&bvm=bv.63808443,d.aWc

A few places (courtesy of SpyHill Research’s page) where you can use GoogleMaps to follow a model:

> SUNY College at New Paltz, New York:  Map, KML

> Dutchess County Rail Trail, Morgan Lake, Poughkeepsie, New York:  Map, KML

> Riverfront City Park, Salem, Oregon:  Map, KML

> Walkway over the Hudson, between Poughkeepsie and Highland, NY:  Map, KML

> Marist College, Poughkeepsie, NY:  Map

 

For an insanely delicious solar-system project for any mad bakers in your circle, visit Rhiannon’s recipe on her cakecrumbs blog: http://cakecrumbs.me/2013/08/01/spherical-concentric-layer-cake-tutorial/ with some extra photos and video on waitwow http://www.waitwow.com/make-scientifically-accurate-cake-planets/

If you need more reassurance that science and math are not only fun but also funny, visit http://www.xkcd.com (but do prescreen before sharing with students—this webcomic does sometimes use “PG-13” language.

If you have already memorized all of Gary Larson’s Far Side comics, visit the science cartoon webring at http://jcdverha.home.xs4all.nl/scihum/webring.html

And of course, don’t forget to visit Science Cartoons Plus (http://www.sciencecartoonsplus.com/pages/gallery.php)

 

Materials shopping tips:

Pins with small round heads—look for beading pins—however, be aware that beading pins aren’t sharp, so pick up some ordinary pins as well. http://smile.amazon.com/Beadaholique-20-Piece-Ball-21-Gauge-1-5-Inch/dp/B00BBAXXYS/ref=sr_1_1?s=arts-crafts&ie=UTF8&qid=1396515591&sr=1-1&keywords=pins+2mm+head   For pin tips, any small sewing pin with a nice sharp tip will do. (Note that beading pins are not that sharp.)

For the jacks ball, you can pick up a jacks set anywhere. Online (e.g., www.orientaltrading.com , they’re often sold in party packs of a dozen sets. But any bouncy ball bigger than ¾” and no bigger than 1” in diameter will do the trick.

If you decide to buy a playground ball or soccer ball online, locate an air pump before your shipment arrives—they’re often shipped uninflated.

And if you buy on Amazon, be sure to sign up for smile.amazon.com first, so your purchases can support your favorite charity.

Walking to Pluto: Step 3

Published by:

Step 3: Making the Journey

If you skipped Part 1, then you need to know know that in this activity, you will build a scale model of the Solar System as far as Pluto. You will use familiar objects and easy, approximate measurements—mostly simply pacing off distances. This is not a project about being extremely precise; the goal is to develop a strong perception of just how big the solar system is and how small the planets are within that system.

For preparation, you need only to assemble the collection of properly-sized objects listed in the requirements table (See Step 2) and print out the “cheat sheet” you’ll carry on the Walk. A glance at a map of your local area will help you decide which way to take your expedition and to identify some landmarks to stand in for more-distant things like the far edge of the Oort Cloud.  To build your own interest and enjoy some discoveries of your own, check out some of the links I’ll include in the references section (Step 4).

You can feel free to substitute alternate model planets, using the scaled sizes as a guide; however, most of the items called for can be found in an average family home, borrowed from classroom parents, or purchased at a very modest outlay. While modern kids may not find the contents of kitchen spice jars terribly fascinating, using an allspice or peppercorn seed as your “Earth” model will give them a lifelong reference point–they’ll be smelling pumpkin pie or watching a chef grind pepper and that spark of memory will remind them of this project.

Because the scaled planets range from the size of a pin point to the size of a jacks ball, it also makes sense to attach each object to something larger, such as an inverted cup or a 4 by 6 index card. If you have access to sports equipment, the bright-colored cones often used for laying out a temporary playing field are helpful. You can position the planet-holder and also tape a “Please Leave Our Experiment Here” sign to the top of the cone. And the bright colors and signs help the explorers to look back and spot the distant planets. Again, be creative! There is no need to run out and buy sports equipment—any handy rock or a brick will do to keep your objects and notes in place.

Here's my Walk kit, ready to go.

Here’s my Walk kit, ready to go.

When reviewing the Cheat Sheet, you’ll see that this model describes our solar system as far as the outer edge of the Oort Cloud. However, to go all the way to the Oort Cloud in this model is a journey of 75 miles (100 km), so don’t expect to travel that far. Instead, as part of your preparation, identify a few local landmarks 1 or 2 miles from your start point and also pick some regional and further-off destinations to match the scaled distances for such key locales as the Oort Cloud, the heliopause, the estimated positions of the Pioneer and Voyager spacecraft, the far edge of the Kuiper belt, and our further neighbors in the Universe. If you’re too short on time, the Cheat Sheet includes some general destinations, but your own localized ones will be much more meaningful to the group. If your group won’t have time to walk all the way to Pluto, find out where Pluto would be in that locale and point ahead to that location before you do turn back.

Once in the classroom, before launching your exploratory mission, start with a quick review of the concept of scale. Regardless of your target age group, toys which are also scale models of cars or airplanes or trains are helpful examples. Quickly walk through a sample of numerical proportions to give a sense of how it goes when you are creating your own scale model: for instance, sketch on the board or a sheet of poster paper a rough scale drawing of the classroom room at 1 inch per foot (5 cm per m). Rather than slowing down the project with extra work, prepare for this session by making your own rough measurements of the classroom dimensions in advance—simply pace off the length and width and note any additional features to the room. Remember, the idea is to illustrate your point, not to create an architectural drawing.

Moving on to the Solar System, start with the Sun…an 8-inch-diameter playground ball or an ordinary soccer ball fits our scale. Ask if anyone can guess what size the Earth should be to go with this “Sun”. The guesses are very likely to be way off, because most “models” used in classrooms and the pictures in the textbooks are not at all to scale. In those, Earth is shown as a recognizable ball appearing as much as a tenth the size of the Sun.

Once you have a few guesses on record, share the key data. Write on the board or a flip chart as you go, to keep the presentation lively. (Nothing kills attention like a PowerPoint!) The Sun’s diameter is about 800,000 miles (1400 thousand km), and we’re using an 8-inch (18 cm) ball, so each inch stands for 100,000 miles (or, a cm stands for 75,000 km). The Earth’s diameter is only 8,000 miles (12,700 km). So how big will the model Earth be? It turns out we need something less than 1/10th of an inch across, only 0.08 inches (0.17 cm). So now you can pass around your “Earth”…a peppercorn will work, so will an allspice seed. (And, yes, you can get away with crumbling up a bit of paper and claiming it’s a spitwad you found.) If you have a spice-jar worth of seeds, everyone can have their own Earth to keep. Let the students take a moment to actually compare the sizes of Earth and Sun. It’s a dramatic difference, nothing like what their textbooks show.

Now it’s time to figure out where the Earth and Sun should be to fit in with this scale. Start by inviting students to guess…they will likely assume you can fit the Earth-Sun model easily inside the room. So now, add the distance data they need and we can “step” through the necessary calculation:

  • The Earth is roughly 93 million miles (150 million km) from the sun.
  • In our scale model, that’s 930 inches (2000 cm)
  • or 78 feet (20 m),
  • or 39 steps of about 2 feet (40 steps of 0.5 m)

Notes:

  • In our model we’re using a pace distance reasonably close to the average woman’s step length and not too far off the step length of a child who is supposed to be walking but can’t resist running. If your group is adult men or tall women, you can use the worksheet to adjust the number of steps accordingly.
  • Our scale in SI (Système international, or metric) is slightly different than in English units, so that those using the SI version can also use simple round figures.

At this point, try to keep a straight face while pretending to start building the model inside the classroom. Dramatically place the “Sun” at one end of the room and try to pace off 39 or 40 steps. Unless you’re doing this activity in a large lecture hall or a cafeteria, you will quickly run out of space (pun intended). By now, it should be clear to the students that this is to be an outdoor activity.

If the group is not too insanely anxious to get outdoors, you can take one more minute to assemble a part of the model which will fit in the room—the Earth-Moon system. Our Moon is nearly ¼ the diameter of Earth, so it’s actually an important body in its own right. And it’s close by. In our scale model, the Moon—which can be represented by a single nonpareil or cake “décor” candy—is 2 3/8” or 5 cm from Earth—so Earth & Moon can be stuck to a card or piece of paper. Keep in mind that if your group is too anxious to get outside, you can choose to save this step for your arrival at the Earth’s position in the model outside.

Earth and Moon are stuck together

Earth and Moon are stuck together

Set the very few ground rules for the mission plan. The model is built by counting steps—the students will be the ones to do the counting and you (the project leader) will expect them to try hard and in return will not be too fussy about precision or how the measurement accuracy may be affected when leadership shifts from short to tall students.   The group will remain cohesive, so no-one misses out on any important discoveries—and no one will charge ahead lest they get “lost in space”. And everyone should understand the time constraints.

When the group is large, I’ve had success assigning small subgroups to accompany one adult leader as the “vanguard” to each planet, leaving the rest behind until they have “landed,” then allowing the followers to run full-speed to catch up. If you do this, it’s important to ensure everyone has a turn to be in the vanguard at least once. If the students have been studying the planets, the vanguard students can also be asked to provide just a few key bits of information to the other explorers as features they have “discovered” about the planet they just reached. However, resist the urge to turn each stop into a seminar—the goal is to travel as far as possible across the system quickly enough to return before class time ends.

Remind the group that it’s a long walk across the solar system and then get started for real. Carry your Sun to a central location outside. If you can park Sol near a tall landmark (such as a flagpole), you’ll find it easier to point back to the “center of the Solar System” as you move further away. Take your Cheat Sheet in hand (the page from the resource kit listing your step-off distances) and read out the number of steps from the sun to Mercury. Send the Mercury explorer team ahead to place Mercury in its position, and quickly join them with the rest of the group. If the vanguard has some cool facts to share about Mercury, give them time to speak. And move on to Venus and the rest of the inner planets.

The asteroid belt portion is the first region containing many objects. If you pause at Ceres, the biggest dwarf planet in the inner Solar System, it helps reduce the stigma of Pluto being “only” a dwarf planet. The fun part in these “belt” regions is to pretend to dodge the small asteroids or other objects—while you may mention that there really isn’t any significant risk of running into an asteroid, that is no reason to turn down the chance to pretend you’re in a crowded mess of obstacles just like in the movies. Even Neil deGrasse Tyson, in his reboot of Cosmos, includes a sequence in which his Ship of the Imagination zigs and zags through, first, a crowded Asteroid Belt and later a densely-packed Oort Cloud.

If time is short or you are working with younger children, it is reasonable to make it to Jupiter (don’t forget to dodge the asteroids on the way out) point out roughly where the outer planets, Pluto, and the further objects would be found and then head back to Earth.

In any case, carry some ordinary first-aid supplies and be sure to have extra adults on hand to slow down those who want to jump to lightspeed. Don’t worry if you don’t have a straight route to use…twisting and turning your way around the streets of a neighborhood is equally impressive. If time will permit, participants can bring lunches and picnic in the Kuiper Belt before returning. And remember, as you return to collect the planet models, it is just as fun to rediscover the distances on the way back.

 

 

 

Walking to Pluto: Step 2

Published by:

Step 2: The List of Requirements:

Don’t worry.  This is one of the least expensive major science projects you’ll put together.

You’ll need:

Note that

I found a sunny yellow ball for my Sun.

1) Any ball roughly 8” (19mm) in diameter—a basic playground ball is likely to work, as will a standard soccer ball. FIFA size 5 works for the English-units model; the SI model is slightly smaller, so a youth-sized FIFA size 4 is appropriate—but don’t get bogged down in the details. Visually, when compared with the planet models, all of these ball sizes look the same.  It’s most likely that you already own or can borrow a ball for this project; if you simply must buy a ball, you should be able to find one for under $10.

 

 

2)  A set of eleven objects to represent each of the eight planets, our Moon, and two of the dwarf planets:

Mars or Venus

Mars or Venus

Pluto or Ceres

Pluto or Ceres

a)  four pins (two pin heads represent Mars and Venus, two pin points represent Ceres and Pluto),

The Moon Is Made Of Green Candy

The Moon Is Made Of Green Candy

b) one tiny candy nonpareil (cake décor or “sprinkle”) for the Moon

Earth Gets Spicy

Earth Gets Spicy

c) two peppercorns or allspice seeds for Earth and Venus

 

Having a Ball with Jupiter

Having a Ball with Jupiter

d) one jacks-size ball (Jupiter)

This jellybean could be Uranus or Neptune

This jellybean could be Uranus or Neptune

e) two jelly beans (or coffee beans) for Neptune and Uranus

 

Saturn represented by a large swirly peppermint

Saturn represented by a large swirly peppermint

f) and a ¾” (19mm) “shooter” marble or a big round piece of candy (also 3/4″ or 19mm) for Saturn.  (It’s just so nice to have something extra-cool and colorful for our most spectacular planet.)

 

 

Total cost: less than a dollar US; ideally, rummaging about an average home or allowing participants to bring contributions should turn up most of these objects for free. To splurge, pick up a whole jar of fresh peppercorns for around $5 and share them out among the students.

2) Eleven inexpensive holders for your objects, with the object names written on them. Empty clear yogurt containers or plastic drink cups work very well (see photos), as the pins can be pushed through the cups and others attached with glue to the cup bottoms…such that the cups then serve as mini-pedestals for the model objects. However, don’t feel bound by guidelines here—a set of index cards will do the job if that’s what you have handy. It does help to secure each object to its support. However, be sure that students can see the actual object clearly so that everyone has a feel for the scale. Cost: as much as 10 cents

3) A few signs printed on regular-sized paper to leave with objects that will be waiting for your return, such as:  “Please Leave This Experiment Undisturbed — (Teacher’s Name).”   Cost: 10 cents

4) Weights to keep each sign from blowing away in a breeze—anything from a handy rock to a water bottle to an actual sports-field marker from your supply closet.   Cost: negligible

5) Your basic first-aid kit and/or other equipment required by local protocols for a field trip.

6) Water as needed (Up to $10 if you need to buy each student some bottled water; negligible if students can bring refillable water bottles.) You may choose to make the walk as short as a half-mile (kilometer) or as long as twice that. For a short walk, you should only need modest supplies; for a long walk, snacks and water will be welcome.

7) A printout of your “Cheat Sheet” for either the English-units or SI-units version of the project Walk to Pluto, Miles or Walk to Pluto, km   (Just click to download the desired document) Whichever measurement system you’re using, it’s just one sheet, front & back, and includes short comments you can make as you take your trek. Cost: 15 cents, if your printer ink is expensive, because it does have colors.

Total cost of essential supplies: normally about a dollar, assuming most items can be gathered at home or borrowed.   For bottled water, if needed, budget an additional 50 cents per student

If you purchase all new supplies, you could spend as much as $40 for a brand-new soccer ball, a jar of nonpareils, a jar of peppercorns, a packet of pins, a jacks game, a bag of marbles with a shooter, and a package of jellybeans.

Interested in more details about the project calculations?  Here are copies of the complete worksheets:  Walk to Pluto Databank, miles and Walk to Pluto Databank, km

(For workbook copies in Excel format, ready for editing, I can send you a copy via Facebook messaging.  Just connect to one of my pages, Pixel Gravity or Cometary Tales.  Say, while you’re there, “like” the page.  Either way, you’ll receive the file in a return message.  The beauty of this approach is that you don’t even need a copy of Excel to use the workbook—Facebook will prompt you to choose whether to open it in Office Online or to download it.  The alternative is to email me via cometary@cometarytales.com.)

 

 

 

 

Walking to Pluto: Step 1

Published by:

 

Compare the sizes of Earth and Pluto & Charon Image Credit: NASA

Compare the sizes of Earth and Pluto & Charon (Pluto’s shadow isn’t that big on Earth!) Image Credit: NASA

It’s been a super-fantastic #PlutoFlyby day (see the video for a Pixel Gravity simulation of New Horizons’ close approach path on 7/15/2015), and I can’t resist going to one of my favorite astronomy projects:  building a scale model of the Solar System that takes you out of the house, out of the classroom, and under the sky.  (Where maybe Pluto’s shadow, cast by a distant star, will pass over you.)

As a reminder, you can look for the following in any Messy Monday project:

  1. A set of notes for project leaders, sketching the key elements of the project and the science topic it is meant to address
  2. A detailed supply list, structured to make it simple to purchase supplies for either a one-shot demonstration or for a classroom-sized group activity.
  3. A set of instructions for working through the project with students, including commentary to help cope with common classroom-management issues, questions that are likely to arise, and issues to keep in mind from safety to fairness.
  4. A rough estimate of the cost to run the project.

 

As before, I’ll break down the presentation into four postings, to spare readers trying to scroll through a 5000-word document, but I’ll post them quickly, so you can jump ahead if you are raring to go or want to access the reference materials first.  In other projects, we built our own comets. In this project, we travel out into the solar system, hoping to reach the source of that comet.

 

Step 1: Space is Big

It’s a long way to Pluto. But as far as the Universe is concerned, Pluto’s in our condo’s tiny back yard. What would it be like, though, to take a hike to Pluto? Like the New Horizons Spacecraft spacecraft buzzing past Pluto and its cluster of moons, but, well, maybe taking a bit less time about it. Nine years (the explorer was launched in early 2006) is longer than even the above-average student’s attention span. What if we could shrink the Solar System down to a reasonable size for nice walking field trip?

Paths of the nine planetary objects orbiting the Sun for many years.

Paths of the nine planetary objects orbiting the Sun for many years (A Pixel Gravity simulation result.)

No surprise here: it’s been done. Six ways to Sunday, in fact. While no one person claims to own the idea of building a scale model of the solar system, my favorite advocate of such models is Guy Ottewell, who likes a scaling factor that makes the model a reasonable size for the average person to walk. You can buy his book on the subject (now with cartons!) at the books page on his website. As a bonus, you’ll also find the most current editions of all of his other books on astronomy and much more.   (He self-effacingly describes his annual Astronomical Calendar as “widely used”; a more-accurate description would be “fanatically used by serious amateur astronomers”.)  No disclaimer necessary;  we’re not friends, I’m just one of his (many) Twitter followers.

The goal of this project is for everyone involved to obtain a personal sense of the feature of Outer Space that is hardest to conceptualize by reading books and trolling the internet: Space is BIG. (Yes, you may pause to reread the opening to The Hitchhiker’s Guide to the Galaxy, by Douglas Adams.)  Indeed. Really Really Big.

Our neighbor galaxy, Andromeda (Image Credit:  ESA/Hubble)

Our neighbor galaxy, Andromeda (Image Credit: ESA/Hubble)

On top of that, the places you can stop—the non-empty bits—are few and very tiny compared with the distances between them.  And it takes a long time to get from one stop to another.

So, when assembling materials and presenting this project, keep these two key goals in mind. It’s not important whether you model Earth as a peppercorn (Ottewell’s model) or an allspice seed (easier to find in my own kitchen) or a spitwad from the ceiling that happens to be about a tenth of an inch across.   What’s important is that the Earth is not only extremely teensy compared to the Sun, but you can’t even fit the Sun and Earth into an ordinary classroom. And you have to hike at least a half a mile (a kilometer) if you want to make it to Pluto. With any luck, you can make practical use of the excess energy in a classroom-full of kids and also amaze them. If you’re doing this as a classroom helper and the teacher is used to taking advantage of the time to catch up on infinite paperwork, this is a time to persuade that teacher to shove the paperwork aside and join the expedition. There will be no regrets!

The objects used to represent planets and other bodies should be chosen for familiarity, because you want the participants to absorb the scale comparisons effortlessly. “Everyone knows” how big a jellybean is, a pin is familiar—both the pushing end and the painful poking end—a soccer ball is a known object, and so on. It doesn’t matter if the object you use is not exactly the design diameter—and no one is going to care that jellybeans or coffee beans are bumpy ovoids, not spheres. The next time you’re eating a jellybean (or slurping a Starbucks), at the back of your mind will be “I had to hike a half-mile just to get to this little Neptune here”.   Plus, “Yum, astronomy is delicious.”

If you’re interested in the underlying concepts, I encourage you to stop by the National Optical Astronomy Observatory’s website and read Guy Ottewell’s original 1989 description of his Thousand Yard Model; however, if you consider yourself a mathphobe, don’t let the arithmetical computations worry you. I’ve made you an Excel worksheet to do that task. Running a mind-expanding science project should help relieve that condition, not make it worse.

If you have visited a museum’s scale model, read Ottewell’s book, or done a similar project in the past, there are a few differences you may encounter in this project. In particular, I suggest you avoid having planets represented by peanuts. Including nuts in school projects, can be problematical if any student (or parent helper) with nut hyper-allergy could possibly be affected. (I have relatives with this allergy, and there is nothing quite like coping with anaphylactic shock to ruin a day’s outing.)

Dwarf Planet Ceres Image Credit:  NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dwarf Planet Ceres Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

I’ve included a few more “destinations”—such as the ever-popular asteroid “belt” and my personal favorite of Pluto’s fellow dwarf planets. The number of steps taken between planets (and other destinations) is greater, because kids take shorter steps than grown-ups. (Also, other models I’ve seen assume a stride length more typical of men—and the majority of teachers and parent volunteers are still women, with shorter strides than men.) And I’ve included the current (for now, at least) locations for a few more distant “destinations” that we can look out towards from our turnaround point at Pluto.

The tables I’ve provided are in both English and SI units. The scales are slightly different between the two, in order to yield intuitively-scaled results in either set of units. And I’ve provided a “cheat sheet” of the key data for a teacher or other presenter to carry as a reference source on the walk. If anyone would like to get completely precise and build their own model matching their pace length exactly, or adjusting to a different scale, you can request a copy of my Excel workbook for this project to create your individualized pace-off. Or if you know a Senior Girl Scout or Boy Scout in need of a Gold Star or Eagle project, a community solar system model would be a very cool service project. (C’mon, Scouts, do you really want to build another park bench?)

Speaking of space, and coolness, and peanuts, and bigness, by the time your group finishes this project—everyone who participates should wholeheartedly agree:  Space is Big

A Sign From NASA

A Sign From NASA

 

 

 

Chasing Comets: Notes for Project Leaders #1

Published by:

Chasing Comets

In this activity, the most important idea is to explore and experiment with models and games to understand how a comet’s tail behaves as the comet hurtles around the sun. The key concept is that the comet’s tail is being pushed away from the sun by the ionizing radiation, solar wind and even the light itself blasting out of the sun. This means that when the comet is inbound, approaching the sun, its tail streams behind it, like a horse’s tail. But on the outbound journey, as the comet leaves the sun behind, its tail flies out in front of it. What we hope the participants will take away from these activities is a picture of what a comet looks like as it moves and the knowledge of why it looks that way.

Comet-tail behavior simply makes sense when “experienced” from the comet’s point of view.  If by any chance some of these facts are a discovery for you, too, don’t feel like you have to keep it a secret that you are learning–have fun with it. A key ingredient in the formula for growing a scientist is that finding out how the universe works is fun. Or, in the words of one physicist profiled in the film Particle Fever: The real answer to “why do we do this is . . . because it’s cool.”)

Keep in mind the constraints of your particular situation when assembling your materials and pre-planning the project. For instance, if there aren’t enough classroom scissors or if session time is tightly constrained, you can pre-cut the ribbon for the individual comet models into 3-foot lengths. Be aware of opportunities for participants with special needs—for instance, the comet-running activity does require at least one person to be standing still. In return, that one who just can’t stand still could be a pinch-runner. If the group as a whole isn’t particularly fast-moving, the “running” game can be done at whatever pace suits the team.   (One can be a “student” at any age—most of us middle-aged folks are not exactly speed-demons.)  If you’re planning this as a home-schooling project, this is one you’ll want to save for a get-together with other home-schoolers–you need at least three players and it is ever so much more fun with a group.

Stage 1: The Small-Scale Experiment

This description may look long, but that’s just to let you walk through it easily and to share some photos to help. This whole Stage 1 should take about fifteen minutes, tops.   I’ll spare your weary eyes and park the “Stage 2” and “Stage 3” activities in the next posting–but don’t worry, the entire activity fits into a single science session if you can claim an hour’s time to play with.

Before distributing materials, bring out one individual model comet, the sample to be used for the models everyone will take home. It’s simply an ordinary badminton birdie with long streamers of ribbon tied to it. For now, keep the ribbons bunched up inside the net of the birdie. Explain that the ball at the end of the birdie is the comet’s nucleus, the frilly part can be its atmosphere, or coma, which begins to form as the gas and dust which jets away from the outer layers comet as it warms up.

Chasing Comets

One Small Comet

Notes: I’d suggest that you relax and let your sample comet be imperfect—comets are messy creatures by nature and you don’t need that one super-meticulous individual slowing down the whole event by striving to exactly matching a perfect sample. If you have an older, more experienced group of comet enthusiasts to work with, you can interject the extra information about the distinction between the ion and dust tails—perhaps even represent them by different ribbon colors. On the other hand, if you’re working with anyone between the ages of 5 and 15, and you don’t want to deal with distracting snickers and giggles erupting through the group, simply refrain from using the technical term for a birdie. Oh, come on, you know why.

OK, back to it. The ribbon represents those gases and dust particles that make up the comet’s tail(s). Now, if we toss our model across the room, what happens to the streamers tied to it? Right . . . they float out behind. They don’t stretch out in front or clump in a bunch around the head of the “birdie”. You can demonstrate by trying to throw your comet backwards: hold the tail in front and toss, but the tail will just fall back to the head and—if your throw is a mighty one—end up in back again..

Now, invite answers to a key question: why does the ribbon float behind? What pushes the tail behind the cone as it flies through the room? With a little nudging, you should get general agreement that it is the air pushing on the lightweight streamers, shoving them behind the “head” of our comet.

But now we must turn to a more difficult line of questioning. Pull out playground or soccer ball (a handy model for the sun), and ask one student to stand and hold up your Sun so everyone can see the next portion. Bunch up the comet’s tail in the back of the shuttlecock again, and carry the comet in a “flight” around the “Sun”. As you move, ask the students to think hard about what happens to the comet’s tail as it whips around the sun.

Start easy. Shake out the streamers, and stretch them out with your free hand. Move the comet towards the sun. Which way should I point the streamers? Everyone will be quick to tell you to pull them backwards, away from the sun. Now, place the comet at its closest approach to the sun, just before it curves back to head into deep space again. “I’m at the Sun now,” you can say, “zooming around the back of it. And moving as fast as I’ll go in this journey. Which way should the streamers point?”

Usually this question generates some disagreement. A reasonable argument would be that you should hold the streamers behind the comet, as it moves, which would mean the comet’s tail would point along a tangent to its orbit around the Sun. (Even if the students are covering tangents in math, please don’t interrupt yourself to pause and discuss tangents right now! Use this lesson later to enliven the math session.)

Chasing Comets

Tail Behind?

Chasing Comets

Tail In Front?

Chasing Comets

Tail Sideways?

Some students may suggest—quite logically–that when you are that close, the Sun’s gravity should pull the tail towards it. If the group is large enough, you should also get someone who can argue that the tail should point away from the sun—for now, it doesn’t matter if this is a knowledge-based claim or just a contrarian viewpoint from snarkiest person in the room. Whatever hypotheses are offered, just accept them as proposed solutions and demonstrate what each would look like.

Finally, move to the “outbound” portion of your comet’s orbit. “Our comet now flies on away from the sun, perhaps to return in another century or two. Now, which way should the comet’s tail point?” Again, if you have managed to keep a poker face so far, the most popular answer is likely have the tail streaming behind the comet. As before, accept and demonstrate each of the guesses. If students have reasons for their theories, let everyone hear them. Discussing and justifying hypotheses is an integral part of the real scientific process.

If you have access to a blackboard (oh, well, it’s modern times, so, okayokayokay, you can use your smelly whiteboard or that fancy tablet-linked projector), now is the moment to leave off demonstrating with the model and sketch the competing hypotheses for everyone to see. Your picture will look kind of like this. Please remember to Keep It Messy.

Chasing Comets

Discussing Possible Tail Directions

Have you ever read one of those annoying mystery stories in which the author leaves you in the dark about a critical fact that solves the entire case? Well, here too, we have denied our puzzle-solvers an important clue. So, tell the group it’s time for a change of topic. But actually what we’re doing is rolling out the narrative twist that makes the whole thing so cool.

Here on Earth, it is air that pushes the streamers on our comet model. But how much air is there out in space? (So little that you might as well say “zero”!) But without air, why should any comet have a tail at all?

What comes out of the sun? You should hear the following answers: heat, light, maybe even radiation. But has anyone heard of the solar wind? The sun blasts out particles, too? The sun is shooting out plasma, protons and electrons flying through the solar system at thousands of miles per hour. This is the solar wind, which blows through the solar system all the time, at thousands of miles per hour. The particles are tiny, not even as big as atoms, so it is an invisible wind. And like wind, it’s not perfectly even, it gusts and changes from moment to moment as the Sun itself changes.

All of those things we named help to make our comets look the way they do. Consider your audience…

Explanation #1: You are all correct. All of that stuff blasting out of the sun–light, radiation, heat, and the solar wind–shove all that stuff leaking out of the comet into a tail. And since all that stuff is coming from the sun, the only way the tail can point is away from the sun.

Explanation #2: All of those answers are correct . . . and they all combine to make a comet’s tail. The heat of the sun warms the comet to free the gases and dust. The solar wind blasts the gases—and the particles in the solar wind also interact with those gases, stripping some of their electrons to make that part of the tail a glowing stream of ionized gas. The radiation from the sun actually can push things, and that pressure is just strong enough to shove those tiny dust particles enough to counteract their tendency to fall towards the sun. And the visible sunlight reflects from the spread-out cloud of dust, making the comet shine in our night sky.

Again, with older/experienced participants, now is the time to clue them in that radiation pressure—the totally cool idea that sunlight itself exerts pressure—exists because light is electromagnetic radiation and electromagnetic radiation is a wave and a wave [http://physics.info/em-waves/] pushes on the objects it encounters. You may not feel battered and bruised by the TV and radio waves powering through you day and night or be physically bowled over by the sunlight forming a gorgeous rainbow. But: it’s enough to push fine grains of dust. The only sad thing about radiation pressure is it’s not common knowledge yet—it’s been proven since 1873.

To represent these solar forces, we need to make a breeze. For that job, a fan does the trick. When we turn it on, it blasts a healthy “solar” wind. (Be sure to experiment in advance with your fan and sample comet–there’s a lot of variation in fan settings.)

Chasing Comets

Inbound Comet

Hold the comet in the “inbound” position, with the front of the birdie pointed at the Fan Sun.  Yes! We were all correct: the tail points behind the comet as it moves towards the sun.

If the fan is strong enough, you can also use the model to hint at how the length of the comet’s tail changes. Far from the sun, the comet has no tail; far from the fan, our streamers dangle to the floor. A little closer in, a real comet’s tail appears as a pale streak behind it; as you approach your fan, the model’s streamers lift up and begin to flutter weakly behind it. Near the sun, the tail stretches out millions of miles behind a real comet’s head; near the fan, the your streamers stretch their full length.

Now, what about when the comet is heading away from the sun? Which way will the tail be pointing, now that we know about the solar “wind”? Nearly everyone will see, now, that it must point away from the sun.

Chasing Comets

Outbound Comet

Demonstrate that this works: you point the birdie’s nose away from the fan, turn on the blast, and the streamers flow out over the front of the birdie. The shape of the birdie helps emphasize the incongruity of our expectation—that the tail goes behind—with the reality: the solar forces push the tail.

If the class has patience for one more test, add the third question: what happens when the comet is rounding the far side of the sun, and is pointed “sideways”? Hold the comet model perpendicular to the flow of the fan.

Chasing Comets

Comet At Perihelion

Let everyone see how the tail sweeps out to the side of the comet. It always points away from the sun, no matter what direction the comet is pointing.

Here’s 13 seconds of one model comet in action:

 

 

Coming Real Soon:  Stage 2

 

 

 

 

Cooking With Kuiper: The Instruction Set

Published by:

(update:  2/18/2015)

Time to build a comet!

If you have adult or older-student assistants, ask them to take charge of crowd control; that is, keeping the audience from crowding around the demonstration. Everyone will get to see the comet! Spare a minute for a brief lecture on the hazards of dry ice. You may have participants who know that dry ice can “burn”, but not all will understand that idea at first. However, no one wants to get hurt. Mention that you will be protecting your hands with gloves and your eyes with safety goggles (or safety-rated eyeglasses).

Supplies for Comet Making (Just Add a Cooler-Full of Dry Ice)

Supplies for Comet Making (Keep your cooler-full of dry ice in a safe spot.)

Participation opportunities include: helping move the materials and equipment to a mess-tolerant location, measuring ingredients, and smashing dry ice. The trauma of allotting slots to help out is one important reason to try the exercise at least twice. (Crowd-control tip: sometimes it helps to announce “I’ll only choose helpers from those who do not raise hands and call out to volunteer.”)  As a first step, take one of your plastic bags and cut it open along one side, then use it to line your mixing bowl.  Take 2 other bags and put one inside the other to make a double-thickness bag.

In the first stage,  your chosen helpers will take turns measuring all the “safe” ingredients into the bag-lined mixing bowl.  Working with the dry ice needs closer control, so keep your supply of CO2 off to one side for now.  As you introduce each ingredient, explain why it’s being included.  You can use the short explanations provided here as a starting point, adding your own facts or curriculum tie-ins, but remember to keep it brief or you’ll lose your audience’s attention.

Let’s start with water: most comets are composed primarily of water ice. During the early formation of the solar system, the planets were bombarded by comets—so some of the water you will use in this experiment may have actually originated in the Kuiper Belt!  (For a popular-science overview, check out this article from Time Magazine.)  Your helper will add 2 cups of water.

Next, add sand or gravel: most comets incorporate at least some rocky material.  Have your helpers measure out about 2 Tablespoon (TB) of grit.

Next, you’ll add ammonia: real comets typically contain NH3, the active ingredient in this cleaning solution.   (Regrettably, few, if any, comets show up to help when it’s time to clean house.)  If you’re using a squirt bottle to store the solution, your helper just needs to add one “squirt” of ammonia solution.  Otherwise, your helper should measure in 1 Tablespoon.

A Dirty Soup of Rocks, Water, and Organics

A Dirty Soup of Rocks, Water, Ammonia, and Organics

And, for our last step before major excitement sets in, stir in a touch of ice-cream topping: these contain organic molecules, which are a normal component of comets. The organic molecules in real comets are not this delicious–they include hydrogen cyanide and formaldehyde–but comets often contain complex and interesting compounds such as amino acids.   Researchers at NASA’s Ames Research Center have shown that amino acids from comets striking Earth long ago during the Solar System’s early eons would not only survive impact but would form even more important compounds for life under the heat of impact.   So it may be that we are here to enjoy ice cream (and sugary toppings) thanks to ancient comets.   Let your helper squirt in one squeeze-worth (it will be about a tablespoon).

Now, finally, it is time to add the dry ice.  Comets contain significant quantities of frozen gases, especially carbon dioxide, which just happens to be the gas that we call “dry ice” when frozen.  This stage of your demonstration is a two-step process. First, you will put on safety goggles and work gloves and use the hammer to tap off about 2 pounds of dry ice (1/4 to 1/3 of your supply).  Place the chunks into the doubled plastic bag and twist the opening closed.  Then, and only then, one lucky volunteer will be asked to don a set of goggles and, once protected, may proceed to smash the contained dry ice with the hammer.

Crushing Dry Ice with Flat Side of Hammer

Crushing Dry Ice with Flat Side of Hammer

Have your crusher use a two-handed grip (this helps deflect the temptation to also handle the bag of dry ice and also limits the range of motion, protecting bystanders from the crusher’s swing) and turn the hammer sideways, to smash with a broader surface area.

Once that stage is completed, ask the crusher to rejoin the group.  Make sure that the wooden stirring spoon is at hand and that you are still wearing your work gloves and goggles. Then open the bag and quickly scoop out roughly two cups of crumbled dry ice.

2 Cups of Ice-Cold CO2

2 Cups of Ice-Cold CO2

Give the mixture a stir and then swiftly add the dry ice, stirring vigorously. There will be some dramatic vaporization of CO2 and in moments the dry ice will freeze the water solution to a slushy slurry. Quickly wrap the plastic bag around your slushy mass and—keeping those gloves on—form the contents into a snowball, using firm pressure to shape the contents.

Comet's In the Bag

Comet’s In the Bag

You will feel the mass harden as you form your iceball. At that point, it is time to unwrap the comet and reveal it to your onlookers. You will have something that looks surprisingly like the common description of a comet—“a dirty snowball”.  You may even want to use your snowball-making skills to firm up the comet a bit once you remove it from the bag–remember to keep your gloves on!

Forming Up the Proto-Comet

Firming Up the Comet

Your finished comet

Your finished comet

Set the comet aside on a cold-safe surface, in a location where the eventual water-ice-melt will not damage anything. The comet will continue to outgas CO2 vapor. If you are working outdoors, any breeze will push this plume into a fair imitation of a comet’s tail.

Gases (CO2) immediately begin to sublime from the comet's surface

Gases (CO2) immediately begin to sublime from the comet’s surface

Your experiment team will undoubtedly want to repeat this process. A typical group of students will demand about four comets. After 2 or 3 builds, it will be time to set up fresh plastic bags for mixing and crushing.  If the group is larger, find ways for students to share participation tasks. For instance, two students can take turns as dry-ice crusher, two can each measure one cup of water into the mix, and so on.  As you proceed, instead of repeating the descriptive information yourself, invite the students to call out more of what they remember about the components represent.

Comet, Starting in "Dirty Snowball"

Here’s one small starter comet, let’s call this one “Dirty Little Snowball”

 

These model comets will last a long time, up to a few hours depending on their size and the conditions.  You can explain that the comets which get our attention are much larger–Comet Halley is estimated to be about the size of Manhattan Island–and between visits to the inner Solar System, they orbit back to where it is too cold for water, ammonia, or CO2 to be anything other than solids.  By no means do you need to make any effort to create spherical, smooth comets.  In fact, as you create successive comets, allow them to be different, irregular, and, well, messy.  Here are a few samples from a few of my comet-making sessions:

That's one frosty, rocky, comet:  "Before"

That’s one rocky comet, frosted with ice crystals of H2O and CO2

 

 

That's one slimy, partly-dissociated comet

Here’s a comet with conspicuous dark patches

That's one tall, cone-shaped comet

That’s one tall, frosty, cone-shaped comet

 

 

 

 

 

 

 

If your schedule permits, allow some time to pass and return to look at the comets after they have lost more material, as if you are checking in on a comet as it approaches the sun and some of its ice has been drawn off under the combined forces of the sun’s radiation and the solar wind…forming the comet’s tail.

Holey Comet, Batman!

Holey Comet, Batman!

Cooking with Kuiper: Project Supply Chart

Published by:

All Lined Up for Comet Building

All Lined Up for Comet Building

(Update:  2/18/2015)

As mentioned in the notes for project leaders, it’s best to repeat the procedure at least twice–three times if the class is large, to ensure that everyone has a chance to participate in the “safe” portions of the activity and to produce a variety of comets to observe.

Purchase dry ice in advance by as much as a day (purchase at the higher end of the quantity range if you need to store it overnight) and  store wrapped in insulating material, but not  tightly sealed.  (Frozen CO2 will sublime to gas and can even explode a container that is sealed too tightly.)  A small non-airtight cooler tucked into another lightly-closed, non-airtight cooler works fine, especially if wrapped in a blanket and stored in a cool location.

For the ice-cream topping, choose a small bottle with a squirt-style top full of caramel- or chocolate-flavor syrup for ice-cream sundaes.  Do NOT purchase hard-shell toppings;  stick to sticky sugar syrups.  Be prepared to fend off requests to sample the syrup.

For ammonia, do not use pure ammonia;  simply choose a basic non-sudsy ammonia-based cleanser.  A “sport-top” (squirting-style) water bottle about half-full of ammonia works well and keeps the ammonia away from hands, eyes, and clothing.  However, be sure to clearly label the bottle with the contents.

For trash bags, choose a good, sturdy brand.  They’ll take significant abuse!

Please note carefully that most equipment is required to be either plastic or wood.

  Per comet

For about 3-4 comets, allowing for waste and failures

 

Estimated cost

(2015 prices)

Good sturdy “tall kitchen” garbage bag, cut down one long edge to make a liner for the bowl 1

2

(have a second on hand in case the original tears)

$0.50

($12 for box of 45)

Additional “tall kitchen” garbage bags

3

Open the bags and layer them one inside the other, to create a triple-thick bag

6

Have a second layered set of 3 bags on hand in case of tears

$1.50

($12 for box of 45)

Large plastic mixing bowl, 2-cup plastic measuring cup, tablespoon measure, large wooden spoon

1 of each

Reminder:  for safety, use plastic containers and a wooden spoon

1 of each Bring from home or borrow from volunteers
Water 2 cups

2 quarts on hand

(store in a pitcher for measuring out in 2-cup quantities)

n/a
Sand or fine gravel 2 tablespoons ½ cup zero
Ammonia 

One squirt (about 1 tablespoon)

 

½ cup

$1.50

($10 for 28-ounce bottle)

Ice-cream topping

One squirt (about 1 tablespoon)

 

About ½ cup (Bring at least a 4-ounce container of syrup.) $6.50
Dry ice 2 cups of dry ice, after crushing. About 7-10 pounds of dry ice. $15($1.50 per pound)
Safety goggles

1 pair, adult size

1-2 pair, adult or child size (depending on student age)

1 pair, adult size

1-2 pair, adult or child size (depending on student age)

If not available in classroom—one-time purchase for reuse in many projects. $5 each

 

Heavy work gloves 1 pair, to fit Project Leader 1 pair, to fit Project Leader Use own gloves or borrow from volunteer (a new pair would cost about $10-12)
Total Cost: $39.50

For an easy-to-print version:  Just Supplies Cooking with Kuiper

Cooking With Kuiper: Notes for Project Leaders

Published by:

(update:  2/18/2015)

Last week on the tvweb, this happened: astronomer Derrick Pitts turned up once more on “The Late Late Show”.  And even though science-loving Craig Ferguson has moved on to new horizons, Director Pitts stayed and showed Guest Host Wayne Brady how to make a comet.  So I looked back at my entries for this project and realized they need some updates, and particularly some visuals. Have patience–it’s a multi-entry blog feature, so look for two more entries for the complete Updated Edition of “Cooking With Kuiper.”

The Kuiper Belt–that donut-shaped aggregation of hundreds-of-thousands of rocky objects orbiting beyond Neptune–is one of the most interesting regions of the Solar System just now.  Just last year, NASA’s Deep Impact explorer hurled a probe into the surface of Comet Tempel 1, flinging up a curtain of debris to reveal more about the comet’s composition.

Deep Impact's probe sent back this image just before striking Comet Tempel 1 (Image: NASA/JPL-Caltech/UMD)

Deep Impact’s probe sent back this image just before striking Comet Tempel 1 (Image: NASA/JPL-Caltech/UMD)

NASA’s New Horizons mission is due to arrive in July 2015 at Pluto–the most famous Kuiper Belt object–to observe the newly-redesignated dwarf planet and its five moons and then head out to explore.  You can check in on the progress of the mission at NASA’s home for New Horizons.  There is a general agreement among astronomers that the comets which return again and again (periodic comets)  began in the Kuiper belt.

In this project, we’ll be building a model of a comet using household supplies to represent most of the comet’s components and dry ice to capture the icy-cold environment of the Kuiper Belt.   While most Messy-Monday projects are entirely hands-on this particular activity is meant as a demonstration with controlled audience participation.  Some students may be careful enough to work with dry ice…but too many are not, and the step at which the dry ice is added can be dynamic and unpredictable.

A study of comets draws in much of what students should know about their planetary system and extends that knowledge into new and intriguing areas.  Students in intermediate grades probably know the basics of comets…that they come from the far reaches of the solar system, that they have tails, and that a comet crashing into the earth makes a cool disaster movie.  They might be surprised to know that scientists still want to find out more about comets, because all we know about comets so far is from watching them on their travels through the solar system.  Just a few months ago, the Rosetta spacecraft launched in 2004 by the European Space Agency actually landed a robotic explorer named Philae on Comet Churyumov-Gerasimenko, so why not launch an investigation into the nature and structure of comets by building our own lumpy, irregular, gas-spewing comets?

This activity is best paired with at least one hands-on activity centering on comets.   The second activity in this series combines a crafting-style model construction project and a cometary motion simulation game.  Other resources can provide other activities.  For instance, students can make a flip-book illustrating a short-period comet’s behavior as it travels from the orbit of Neptune to the sun and back.  And users of Pixel Gravity can run a simulation of the comet impact which led to the demise of the dinosaurs.

In the next installment, we’ll assemble a supply list for this project.  I recommend you  plan to build at least two comets, to let more kids participate and also to illustrate just how different two comets can be.

 

© 2012-2017 Vanessa MacLaren-Wray All Rights Reserved