Cometary Tales Hands-On Science Messy Monday: Science Projects for Kids, Teachers, and Parent Helpers

Messy Monday: Science Projects for Kids, Teachers, and Parent Helpers

Welcome to the first official posting under this new category.  In these installments, I’ll be sharing science projects developed over many years while serving as The Science Mom at my local elementary school and in a community after-school program.   When my friend Jean Southland and I first started the in-class projects, the teacher invited us in on Mondays, to create a fun activity for that worst-of-days to students, the First Day of the School Week.  We fooled around with ideas to give this extra science class a name and settled on Jean’s simple and inviting “Messy Monday”.  Since then, Jean moved on to wider-scale education duties, from teaching to administration, and she is now head of  a local charter school.  In the meantime, I continued with developing classroom-scale science projects and coaching a small robotics team.

When the youngest of my kids finally moved on from elementary school and my geek needs were being satisfied by playing with robots, I felt twinges of guilt that I was leaving the next round of students in the lurch.  The most-frequent comments I heard when running science project sessions could be summarized as: “I could never do that”.  Sometimes it was the teacher, in which case she/he would mean  “I can’t spare the time to figure out supply lists, shop for stuff, sort out materials, and test procedures.”  Other times, it was another parent, in which case the meaning was either  “I could do that, if only someone would explain what it’s supposed to mean” or “I understand the science, but someone needs to give me a checklist to follow.”   And in these times, potential cost is always a concern, as most supplemental projects—from field trips to science experiments—end up being funded by parents or from teachers’ own pockets.

In these episodes, I’ll be having a stab at meeting both sets of needs.  With any luck, the end result will be a book of “recipes” for science projects with enough information provided for teachers to slot into their curricula in order to satisfy the science standards they must meet, with clear supply lists to distribute to classroom-helper parents, and with step-by-step instructions for completing projects that any interested parent or teacher will be able to not only follow but build upon to suit their own audiences.  While (like every other blog in the Known Universe) the ultimate result is to be a book of projects that a teacher or parent helper could have at hand, in the short term, there will be first, these erratic blog entries and second, a series of leaflet-style e-docs in a more readable/printable form, to be available from the usual e-book suppliers.  Think of the blog entries as the beta version, the leaflets as the Basic Edition release, and the eventual book as the Portmanteau Edition, with updates, extensions, and add-on packs as needed.

To open the subject, I’ll be delivering a flurry of quick posts to get things started, but then will back off to a more regular pace.  The goal is to deliver one project-worth of information in no more than two weeks.

Every Messy Monday project guide has four key components:

  •  A set of notes for project leaders, sketching the key elements of the project and the science topic it is meant to address
  • A detailed supply list, structured to make it simple to purchase supplies for either a one-shot demonstration or for a classroom-sized group activity.
  • A set of instructions for working through the project with students, including commentary to help cope with common classroom-management issues, questions that are likely to arise, and issues to keep in mind from safety to fairness.
  • A rough estimate of the cost to run the project.

So, let’s get started with a truly cometary project…

You might also like to read:

Cooking With Kuiper: The Instruction SetCooking With Kuiper: The Instruction Set

(update:  2/18/2015)

Time to build a comet!

If you have adult or older-student assistants, ask them to take charge of crowd control; that is, keeping the audience from crowding around the demonstration. Everyone will get to see the comet! Spare a minute for a brief lecture on the hazards of dry ice. You may have participants who know that dry ice can “burn”, but not all will understand that idea at first. However, no one wants to get hurt. Mention that you will be protecting your hands with gloves and your eyes with safety goggles (or safety-rated eyeglasses).

Supplies for Comet Making (Just Add a Cooler-Full of Dry Ice)

Supplies for Comet Making (Keep your cooler-full of dry ice in a safe spot.)

Participation opportunities include: helping move the materials and equipment to a mess-tolerant location, measuring ingredients, and smashing dry ice. The trauma of allotting slots to help out is one important reason to try the exercise at least twice. (Crowd-control tip: sometimes it helps to announce “I’ll only choose helpers from those who do not raise hands and call out to volunteer.”)  As a first step, take one of your plastic bags and cut it open along one side, then use it to line your mixing bowl.  Take 2 other bags and put one inside the other to make a double-thickness bag.

In the first stage,  your chosen helpers will take turns measuring all the “safe” ingredients into the bag-lined mixing bowl.  Working with the dry ice needs closer control, so keep your supply of CO2 off to one side for now.  As you introduce each ingredient, explain why it’s being included.  You can use the short explanations provided here as a starting point, adding your own facts or curriculum tie-ins, but remember to keep it brief or you’ll lose your audience’s attention.

Let’s start with water: most comets are composed primarily of water ice. During the early formation of the solar system, the planets were bombarded by comets—so some of the water you will use in this experiment may have actually originated in the Kuiper Belt!  (For a popular-science overview, check out this article from Time Magazine.)  Your helper will add 2 cups of water.

Next, add sand or gravel: most comets incorporate at least some rocky material.  Have your helpers measure out about 2 Tablespoon (TB) of grit.

Next, you’ll add ammonia: real comets typically contain NH3, the active ingredient in this cleaning solution.   (Regrettably, few, if any, comets show up to help when it’s time to clean house.)  If you’re using a squirt bottle to store the solution, your helper just needs to add one “squirt” of ammonia solution.  Otherwise, your helper should measure in 1 Tablespoon.

A Dirty Soup of Rocks, Water, and Organics

A Dirty Soup of Rocks, Water, Ammonia, and Organics

And, for our last step before major excitement sets in, stir in a touch of ice-cream topping: these contain organic molecules, which are a normal component of comets. The organic molecules in real comets are not this delicious–they include hydrogen cyanide and formaldehyde–but comets often contain complex and interesting compounds such as amino acids.   Researchers at NASA’s Ames Research Center have shown that amino acids from comets striking Earth long ago during the Solar System’s early eons would not only survive impact but would form even more important compounds for life under the heat of impact.   So it may be that we are here to enjoy ice cream (and sugary toppings) thanks to ancient comets.   Let your helper squirt in one squeeze-worth (it will be about a tablespoon).

Now, finally, it is time to add the dry ice.  Comets contain significant quantities of frozen gases, especially carbon dioxide, which just happens to be the gas that we call “dry ice” when frozen.  This stage of your demonstration is a two-step process. First, you will put on safety goggles and work gloves and use the hammer to tap off about 2 pounds of dry ice (1/4 to 1/3 of your supply).  Place the chunks into the doubled plastic bag and twist the opening closed.  Then, and only then, one lucky volunteer will be asked to don a set of goggles and, once protected, may proceed to smash the contained dry ice with the hammer.

Crushing Dry Ice with Flat Side of Hammer

Crushing Dry Ice with Flat Side of Hammer

Have your crusher use a two-handed grip (this helps deflect the temptation to also handle the bag of dry ice and also limits the range of motion, protecting bystanders from the crusher’s swing) and turn the hammer sideways, to smash with a broader surface area.

Once that stage is completed, ask the crusher to rejoin the group.  Make sure that the wooden stirring spoon is at hand and that you are still wearing your work gloves and goggles. Then open the bag and quickly scoop out roughly two cups of crumbled dry ice.

2 Cups of Ice-Cold CO2

2 Cups of Ice-Cold CO2

Give the mixture a stir and then swiftly add the dry ice, stirring vigorously. There will be some dramatic vaporization of CO2 and in moments the dry ice will freeze the water solution to a slushy slurry. Quickly wrap the plastic bag around your slushy mass and—keeping those gloves on—form the contents into a snowball, using firm pressure to shape the contents.

Comet's In the Bag

Comet’s In the Bag

You will feel the mass harden as you form your iceball. At that point, it is time to unwrap the comet and reveal it to your onlookers. You will have something that looks surprisingly like the common description of a comet—“a dirty snowball”.  You may even want to use your snowball-making skills to firm up the comet a bit once you remove it from the bag–remember to keep your gloves on!

Forming Up the Proto-Comet

Firming Up the Comet

Your finished comet

Your finished comet

Set the comet aside on a cold-safe surface, in a location where the eventual water-ice-melt will not damage anything. The comet will continue to outgas CO2 vapor. If you are working outdoors, any breeze will push this plume into a fair imitation of a comet’s tail.

Gases (CO2) immediately begin to sublime from the comet's surface

Gases (CO2) immediately begin to sublime from the comet’s surface

Your experiment team will undoubtedly want to repeat this process. A typical group of students will demand about four comets. After 2 or 3 builds, it will be time to set up fresh plastic bags for mixing and crushing.  If the group is larger, find ways for students to share participation tasks. For instance, two students can take turns as dry-ice crusher, two can each measure one cup of water into the mix, and so on.  As you proceed, instead of repeating the descriptive information yourself, invite the students to call out more of what they remember about the components represent.

Comet, Starting in "Dirty Snowball"

Here’s one small starter comet, let’s call this one “Dirty Little Snowball”

 

These model comets will last a long time, up to a few hours depending on their size and the conditions.  You can explain that the comets which get our attention are much larger–Comet Halley is estimated to be about the size of Manhattan Island–and between visits to the inner Solar System, they orbit back to where it is too cold for water, ammonia, or CO2 to be anything other than solids.  By no means do you need to make any effort to create spherical, smooth comets.  In fact, as you create successive comets, allow them to be different, irregular, and, well, messy.  Here are a few samples from a few of my comet-making sessions:

That's one frosty, rocky, comet:  "Before"

That’s one rocky comet, frosted with ice crystals of H2O and CO2

 

 

That's one slimy, partly-dissociated comet

Here’s a comet with conspicuous dark patches

That's one tall, cone-shaped comet

That’s one tall, frosty, cone-shaped comet

 

 

 

 

 

 

 

If your schedule permits, allow some time to pass and return to look at the comets after they have lost more material, as if you are checking in on a comet as it approaches the sun and some of its ice has been drawn off under the combined forces of the sun’s radiation and the solar wind…forming the comet’s tail.

Holey Comet, Batman!

Holey Comet, Batman!

Cooking With Kuiper: Notes for Project LeadersCooking With Kuiper: Notes for Project Leaders

(update:  2/18/2015)

Last week on the tvweb, this happened: astronomer Derrick Pitts turned up once more on “The Late Late Show”.  And even though science-loving Craig Ferguson has moved on to new horizons, Director Pitts stayed and showed Guest Host Wayne Brady how to make a comet.  So I looked back at my entries for this project and realized they need some updates, and particularly some visuals. Have patience–it’s a multi-entry blog feature, so look for two more entries for the complete Updated Edition of “Cooking With Kuiper.”

The Kuiper Belt–that donut-shaped aggregation of hundreds-of-thousands of rocky objects orbiting beyond Neptune–is one of the most interesting regions of the Solar System just now.  Just last year, NASA’s Deep Impact explorer hurled a probe into the surface of Comet Tempel 1, flinging up a curtain of debris to reveal more about the comet’s composition.

Deep Impact's probe sent back this image just before striking Comet Tempel 1 (Image: NASA/JPL-Caltech/UMD)

Deep Impact’s probe sent back this image just before striking Comet Tempel 1 (Image: NASA/JPL-Caltech/UMD)

NASA’s New Horizons mission is due to arrive in July 2015 at Pluto–the most famous Kuiper Belt object–to observe the newly-redesignated dwarf planet and its five moons and then head out to explore.  You can check in on the progress of the mission at NASA’s home for New Horizons.  There is a general agreement among astronomers that the comets which return again and again (periodic comets)  began in the Kuiper belt.

In this project, we’ll be building a model of a comet using household supplies to represent most of the comet’s components and dry ice to capture the icy-cold environment of the Kuiper Belt.   While most Messy-Monday projects are entirely hands-on this particular activity is meant as a demonstration with controlled audience participation.  Some students may be careful enough to work with dry ice…but too many are not, and the step at which the dry ice is added can be dynamic and unpredictable.

A study of comets draws in much of what students should know about their planetary system and extends that knowledge into new and intriguing areas.  Students in intermediate grades probably know the basics of comets…that they come from the far reaches of the solar system, that they have tails, and that a comet crashing into the earth makes a cool disaster movie.  They might be surprised to know that scientists still want to find out more about comets, because all we know about comets so far is from watching them on their travels through the solar system.  Just a few months ago, the Rosetta spacecraft launched in 2004 by the European Space Agency actually landed a robotic explorer named Philae on Comet Churyumov-Gerasimenko, so why not launch an investigation into the nature and structure of comets by building our own lumpy, irregular, gas-spewing comets?

This activity is best paired with at least one hands-on activity centering on comets.   The second activity in this series combines a crafting-style model construction project and a cometary motion simulation game.  Other resources can provide other activities.  For instance, students can make a flip-book illustrating a short-period comet’s behavior as it travels from the orbit of Neptune to the sun and back.  And users of Pixel Gravity can run a simulation of the comet impact which led to the demise of the dinosaurs.

In the next installment, we’ll assemble a supply list for this project.  I recommend you  plan to build at least two comets, to let more kids participate and also to illustrate just how different two comets can be.

 

On Aisle 42, Universe Components: The Atomic Marshmallow ProjectOn Aisle 42, Universe Components: The Atomic Marshmallow Project

Now that you have all of your supplies ready, it’s time to guide your group through the construction of a model atom.

Start by handing out the marshmallows and ice-cream topping pieces.  With younger participants, it can maintain focus if you mention that there are extra supplies for snacking on afterwards.

Start with the marshmallow.  Most of an atom is empty space.  And most of a marshmallow is nothing but air frothed into sugar.  So this marshmallow represents the “empty” space of an atom.  For older participants, you can encourage them to think of the sugar of the marshmallow as representing not only the energy that permeates what we call “empty” space but also the forces that hold the atom together.

For a very long time, the atom was believed to be more-or-less of uniform density, an amorphous mixture of tiny negative particles called electrons swirling around in a positively-charged “pudding.”  In 1911, Ernst Rutherford and his team completed a series of experiments that shocked the physics community by revealing that most of the mass of an atom is concentrated in a tiny, central nucleus containing all of the positive charge.  For our model, in honor of Rutherford, we’ll build a helium (He) atom, which has a nucleus containing two protons and two neutrons.  (Much of Rutherford’s research focused on the alpha particle–which happens to be exactly the same as a helium nucleus.)

Let your dark-colored candies be protons and your light-colored candies be neutrons.  (It doesn’t really matter, but textbooks often draw protons as dark dots and neutrons as white dots.)

Using the wooden skewer or toothpick, drill a small hole in the side of the marshmallow. Now use the same toothpick or skewer to push those nucleons (a word which here means “candy pieces representing protons and neutrons”) into the center of the marshmallow.

This is a good time in the activity to stop lecturing and instead gather suggestions from the participants and sketch their ideas on a board if you have one, or to gather around some sketching paper for discussion purposes.  You can expect to see pictures that look much like a planetary system, because that’s the way the atom often (still!) is drawn in textbooks.  You might have a knowledgeable participant who’ll shout out something like, “Shells!  The electrons are in shells!” or “They’re in the Cloud!”  Regardless, during the discussion, build on these volunteered suggestions to reach a description of the electrons as whirling around the nucleus in a cloud, going so fast that you can’t really tell exactly where they are, only that you know roughly how far they are from the nucleus.

At this point, we have a positively charged ion, because we haven’t added any electrons yet.  A helium atom needs two electrons, negatively-charged particles, to balance out the two positively-charged protons.  Once it was established that the positive charge is concentrated in the nucleus, where did researchers decide that the electrons belong?

Our helium atom’s two electrons do indeed share an electron “shell”, a layer of electrons a known distance from the nucleus.  So let’s put a very thin, energetic, sparkly shell around our atom.

Before setting up the shell supplies, pause to demonstrate the procedure.  If you’re working with younger students, you may need to stress that everyone will get their turn.  If the “mess” part of the activity is an issue, set up a protected area where the messy activity is OK and let the participants queue up to build their atoms in assembly-line fashion.

To create the “electron shell” skewer the marshmallow firmly on the wooden stick, then very briefly dunk it into the water, then tap off any excess water into the water container. Tapping off excess water is important, because otherwise the marshmallow can get soggy, which makes for a less-attractive candy atom.

Marshmallow on skewer dunked into clear plastic cup half-full of water.
Dunk
Wet marshmallow held by skewer on edge of plastic cup of water, drops of water dripping off.
and un-dunk.

Each group needs a container with about a cup of water in it and another container with a packet of dry gelatin mix emptied into it.  (For fun, choose a gelatin color in keeping with whatever events are ongoing, or a local sports team’s colors…anything to drive interest.)

Finally, gently swirl the damp marshmallow in the gelatin mix.

Set the decorated marshmallows aside on a sheet of waxed paper or a plate.

As time permits, participants can make other atoms…stuffing different numbers of protons or neutrons into marshmallows and adding a shell of electrons.

© 2012-2025 Vanessa MacLaren-Wray All Rights Reserved