Cometary Tales Astronomy & Astrophysics Drake & Josh at the Kepler Conference

Drake & Josh at the Kepler Conference

No, this entry has absolutely nothing to do with the old Nickelodeon TV show.  It’s just that while doing my edits on the very few photos I took last night, I found that half of them were titled Drake & Josh 1, Drake & Josh 2a, and Drake & Josh 2b.

No, wait.  Back up.

(Note:  if “Kepler” means nothing to you, go peek at this first:  NASA’s Kepler page.)

Last night was a public session during this week’s Kepler Science Conference at NASA-Ames Research Center.  Frank Drake—does anybody even faintly interested in extraterrestrial intelligence NOT remember the Drake equation?—was the speaker for a ‘sold-out’ evening at the Conference Center.

Drake with a glimpse of Lynette Cook's Art

Frank Drake          (with a glimpse of Lynette Cook’s Galactic Internet)

With the tiniest bit of encouragement, my husband “Clark” had scored a pair of the free tickets offered to the public by the Ames Events Program.  We even managed to arrive early enough to worm our way into decent seats just behind the “reserved for press” row.  Just between you and me, acquiring those seats involved summoning the chutzpah to ask a woman who was clearly saving a seat for her husband if she could shift left or right one seat to make room, either by claiming the aisle seat for her husband or dibsing the middle seats.  She chose the aisle-seat access.  As she moved over, so did the young man next to her, leaving us with one more free seat which was swiftly nabbed by someone in the next wave of arrivals.

So it all works out well.  One more person got a nearly-front seat (without having to ask for favors), we started the evening filled with gratitude, and the college student got to sit with David Morrison—NASA astrobiologist and SETI Institute leader—and his wife.  (Yes, that’s who the tardy husband was.  “Why didn’t you tell me?” I said to Clark.  “Well,” he lamely explained.  “I don’t see him with his wife at the cafeteria.” )  The student had taken Caltrain all the way from San Francisco and then hiked from the train station to Ames.  He was excited to be surrounded by so many astronomers, but instead of being daunted by that, he’d decided to get as many autographs as he could on his printout about the event.  Most people he asked for autographs from also gave him business cards and some asked for his name in return.    His name is Joshua Caltana.

So now you see where that strand is headed.

Meanwhile, there were a fair number of cell-phone photos being requested in the front-row group.  Frank with one Kepler astronomer.  Frank with another.  A photo of someone taking a photo of Frank with someone.  Was it noted that one of the people sitting in the front row a few feet away was Dr. Drake?   Oh, to be an official Press Person.  They really needed a proper camera with a bounce flash in that light.

A free public talk in the heart of Nerd Country is a strong draw, and traffic was backed up at the gate, we heard.  So there was a delaying action.  Kepler staff launched a putatively impromptu quiz game, awarding Kepler memorabilia to audience members who had the correct answers to crucial astro-trivia.  Alas, I was way too slow to raise my hand on the few I knew, Clark was not interested in playing the game, and Joshua’s answer to one question was just close, not correct.  So our Local Group did not win any of the tchotchkes.  Oh, well.  We didn’t come for prizes.  We came to hear “Frank”.

But finally, they tuned up the computer with Drake’s slides and let him speak.  He had a bit of a scratchy throat to cope with, and the Mac was balky about launching the animations on his slides, but he soldiered on with all those rapt faces in attendance.

So yes, I’m going to make you endure a summary of a great talk before looping back to Drake & Josh.  Or you can be lazy and scroll to the end.  Bear with me.  There will be cool links.

Drake does autographs

Drake does autographs (later, later)

So, the talk was entitled “Kepler and Its Impact on the Search for Extraterrestrial Intelligence.”  But Drake put it a little more strongly.  Kepler, he said, is one of the “most important events in the history of science.”   Not only has the Kepler team’s search for habitable planets spotted thousands of planets orbiting stars in the small portion of sky selected for study, their data are useful for sorting through those finds for planets which might fall in the habitable zone.  The sheer impact of numbers is amplified when we realize that Kepler isn’t looking everywhere and that the Kepler results strongly suggest that there are many many more planets out there that the current tools can’t locate just yet.

For one thing, Kepler’s detection technique relies on occultation—spotting a planet passing in front of its star.  Only planets fairly close to a star are likely to be sighted this way, because the farther out a planet’s orbit lies, the more likely that a slight tilt of its orbit relative to our plane of view would make the planet pass ‘above’ or ‘below’ the star—making it invisible to us.  For example, even just at Earth’s orbital distance, 99% of such planets would be missed.

But for now, the numbers are big enough to give us plenty of data to study and inspire us.  Drake’s presentation included a snippet of the Kepler Orrery in which all the planets discovered as of early 2011 dance their way through Kepler’s mission period.  If you’re not too hypnotized by that, you can try Fabryky’s 2012 updated edition.

Kepler results include information about the planets’ orbital distances, and the stars’ characteristics are well-known, so the likelihood of there being planets in their respective habitable zones is becoming accessible.  For instance, with a cooler star, the habitable zone is close.  But what affects the habitable zone other than the star and the orbital distance?  From studying our own solar system, even just our own planet, we know that the characteristics of the planet affect habitability.

The Habitable Zone:  Colorado University

So, then Drake moved into Phase II of his talk, which he later revealed should have its own title

Everything I Ever Needed to Know

I Learned in

Kindergarten   

The Solar System

Aiming for that laugh, he led us on a tour of our own locale.  On Planet Earth, habitability changes markedly if we go up in altitude or down into the ocean.  So the topography and water on a planet affect its habitability.  In the deep atmospheres of the outer planets, it’s been proven that there are altitudes at which temperatures—even so distant from the sun—are about what they are on the Earth’s surface.  He shared an image by Lynette Cook illustrating Carl Sagan’s notion of “floaters” evolving and living in the clouds of Jupiter.   Comb jellies accustomed to the arctic seas of Earth—or alien life evolved to a similar design—would be well-suited to the deep, dark ocean beneath Europa’s insulating icy crust.  Our focus on the traditional Habitable Zone defined by certain distances from each star, based on stellar conditions, means that these alternate conditions for life finally need to get some attention so that the Habitable Zone can be redefined to include these non-Earthly, yet potentially life-supporting situations.   He foresees the narrow band illustrated above being widened to include most of the outer planets…and even those wandering ‘rogue’ planets warmed by nuclear decay.

Next, Drake turned to the conundrum of M-type stars and their planets.  He’s now convinced—thanks to Kepler—that there are likely to be planets around most of these stars as well—and those cool M-types (more familiarly known as Red Dwarfs) are far and away the most common stars.  There are more of them than of all the other star types combined.  Until recently, most astronomers were convinced that a planet anywhere in the narrow old-style Habitable Zone of an M-Type would be so close that it would be tidally locked—with one face permanently facing sunward, dooming the planet to be boiling on one side and frozen on the other.   But those convictions are faltering in the face of new understandings about how orbital eccentricities—such as that of our own planet Mercury—can prevent tidal locking and instead force a planet into a resonance pattern.   (Is this breaking news—did you still think Mercury keeps one face to the sun?  Take a break with Universe Today’s article on resonance.)

Even for a planet that ‘succeeds’ in achieving a tidal lock, atmospheric scientists have decided (provided the planet does have an atmosphere), that mixing by the currents of gas moving over the surface, driven by the heat of a star, would more or less normalize the planet’s temperature, establishing stable conditions in a range of habitation zones.  Drake mused that residents of such a predictable planet would consider it nothing more than “wretched circumstances” to endure life on a rock which rotates constantly and varies its temperature patterns hourly, daily, and seasonally.

Drake never directly brought his famous equation into his talk.  But one critical factor is the length of time that a civilization might be communicating—the likelihood of our finding one another falls if our conversational eras fail to overlap sufficiently.   However, he reported “good news for people who afraid that we have been advertising our presence” and are worried about aliens being “about to invade.”  Our own passive “communication” to the Universe has been dropping off precipitously as our use of technology and energy has shifted.   We used to beam many megawatts of television broadcasts into space.  No more—we’re going with digital, satellite, cable TV now, meaning thousands of times less energy expended accidentally broadcasting to the stellar neighborhood.  Soon, the only signature of our technological civilization to a far-off society could be the lights of our night-lit cities—something we aren’t yet capable of looking for ourselves.  A very patient observer might notice our atmosphere heating up over time and deduce that we have been subjecting our planet to global warming.

Drake enjoys a chat about astronomy

Drake enjoys a chat about SETI

Drake said he is beginning to feel that it may be our moral obligation to start an intentional broadcast, to try to share what we have learned with unknown aliens in the far-off planetary systems.  His reading leads him to believe that altruism is a part of our evolutionary heritage and to hope that evolution elsewhere has instilled enough of that same drive to cooperate so that eventually we may be able to do the one thing that we can do over interstellar distances—talk.

What about the Fermi paradox?  Where are those others?  One audience member was convinced that visitors have been here already, but Drake sadly told him he’d checked out those same stories when he was younger, too, and was disappointed to find they were all dead ends, that the fantastic accomplishments of early civilizations on Earth didn’t rely on helpful aliens but on ordinary humans performing great feats.  Interstellar travel is too expensive, in energy terms, he thinks.  When pressed, Drake’s line is that the reason we haven’t seen alien interstellar travellers is that “the only ones who would try are the dumb ones—and they don’t know how.”

So after the Q&A, there was a little bit of meet-and-greet.  Yes, I got to shake Drake’s hand and tell him I enjoyed the talk and always like it when I hear something new.  He said, “well, I try.”  Our new acquaintance, Joshua, roamed the crowd collecting a few new autographs and working up to saying hello to Drake.  By that time, he was one of the last well-wishers.  Drake was surely pining for dinner (his companions were already talking about food), but he listened to this young student, gave his autograph, and then instead of grabbing his bag and dashing away, he stood up and chatted with him for a few minutes.  Ergo:  Drake & Josh 1, 2a, and 2b:

Drake & Josh 1

Drake & Josh 1

Drake & Josh 2a

Drake & Josh 2a

Drake&Josh 2b

Drake&Josh 2b

 

 

 

 

 

 

 

Coda:  Clark was starved, I was hungry.  So we went in search of dinner.   We randomly selected an open restaurant, placed our orders.  And then Frank Drake and his entourage arrived.  (Well, is 2 people an entourage?  Let’s just say yes.)  So I conclude my report with a mention that Frank Drake finished his long day of Keplering with an omelet plate at Crepevine.  I hope he survived—the portions there are well on the way to having detectable gravitational effects.

 

 

 

 

You might also like to read:

Year of the Comet?Year of the Comet?

This is an exciting year to be looking at the sky!

Comet Pan-STARRS, back in March, was a thrill–if you had clear skies or access to a space telescope.    Here is NASA’s STEREO view of that comet:

Comet Pan-STARRTS (courtesy of NASA)

Comet Pan-STARRS (courtesy of NASA)

 

 

 

 

In October, our intrepid Mars exploration robots and satellites will have a close call with a comet–and there is even a possibility that it will strike Mars:

Comet 2013 A1

Comet 2013 A1 (courtesy of NASA)  See video here.

 

 

 

 

Aaaand…in November, Comet ISON will appear.  This one has been billed as The Comet of the Century, and while other comets have had similar billing and flopped, we’ll have many opportunities to view and learn from its passage.  It may be visible to the naked eye by mid-November, but there’s a chance of an uptick in brightness when it hits perihelion on November 28th (aka Thanksgiving Day in the U.S.).  Many turkey dinners will be sitting cold while astronomy fans dash out with their solar-protection lenses to attempt to spot a brighter-than-Venus comet wheeling close to the sun.  Then will come a few days of frustration until the comet emerges from perihelion in the morning sky, hopefully trailing a dramatic tail.  Sky and Telescope predicts the finest view will come on December 14th, with a huge tail–perhaps spreading across as much as a fourth of the sky–will gleam brightly in the dark sky just after moonset.

In the meantime, and especially during those days it’s seemingly out-of-sight, ISON will be generating considerable science.  NASA’s Solar Dynamics Observatory will have eyes on the comet, as previous sun-grazing comets have yielded masses of information about the sun as well as the passing visitors.  And the twin “STEREO” (Solar TErrestrial RElations Observatory) stations can be expected to contribute their views for potential 3-D detail.

 

Groundhog Day at NASA-Ames: Episode 3, Billions vs BillionsGroundhog Day at NASA-Ames: Episode 3, Billions vs Billions

(NASA Social 2/2/15 State of NASA)

The final stage of our State-Of-NASA day starts with Lunch. If you turn up in the morning with a bit of cash, you can sign up for a box lunch, and I knew from before that it’s a good one. But luckily today, I left my cash at home so my lunch is the granola bar that’s been hiding in my computer bag since I’m not sure when. But, yes, luckily, since we’ve gotten back to the visitor’s center just in time for the start of the budget presentation, livestreamed via the big screen at the Exploration Center. There’s no time to eat more than a granola bar if I want both hands free to type & tweet.

Now, I know that Ames employees were also gathered elsewhere watching the livestream. I’m wondering if it might have been more efficient and more socially fun to have the Social Media crew join that larger group for these livestreams. Maybe next time…

A Disclosure Moment

Sure, I’m a space fan, so it wouldn’t be out of line to assume I’m in favor of funding NASA.  But of course, on top of that, my husband does work for NASA, so there can be an actual family effect from budget decisions.  Though I’m really writing about a) the general budget picture and b) what it’s like at a NASA Social, I’ll avoid the budget topics that directly affect our family.  No, wait, the budget issue that’s most likely to have a real, measurable effect on us isn’t some line item, it’s the regular sequestration of funds by our truculent Congresspersons.  (As in, my husband hasn’t had an actual raise in more than 5 years.)  And then there are those wonderful times when Congress shuts down the government and he and all his colleagues don’t get paid at all and proceed to complain (bitterly) that they have been told to stay home and not work.  There’s nothing worse to a scientist than being told not to work. In any case, here I’m not aiming for a critical review, but more of a “what’s in the budget” overview.

The Proposed 2016 NASA Budget

You can delve into every element of the budget here. http://www.nasa.gov/news/budget/#.VOG06i4bKj8

Let’s see if I can squeeze it into a few paragraphs. And keep in mind this is the requested budget, part of President Obama’s 2016 budget. Congress has to approve it. These numbers sound big to us, spending $18.5 billion on NASA. Just keep in mind that this is 0.04% of the total 2016 Obama budget. And if compared to the defense portion of the military budget, it’s 3% of that.  Here’s the Big Picture:

The Big Picture (Can You Find NASA?)

The Big Picture (Can You Find NASA?)  Source: http://www.whitehouse.gov/interactive-budget

 

Did you find NASA?  OK, once you peer into that 0.04% of the total, here’s what you get:

Category I. Science. $ 5.29 billion (about the same as 2015)

 

New Horizons Nears Pluto

New Horizons Nears Pluto

For this, we get: Landsat and all its kin providing Earth images, taking over all of NOAA’s earth-observing satellites except for the weather satellites, all of the current & upcoming Mars missions, Cassini, the Pluto mission (New Horizons), a mission to Jupiter, detection of near-Earth asteroids, all the space telescopes, the search for exoplanets, the James Webb telescope project and dozens of solar physics projects. Whew.

Category II. Aeronautics. $0.57 billion (down)

For this we get air traffic management tools, tech for unmanned autonomous vehicles, and new technology development for air vehicles.NASA UAV Traffic Control

Category III. Space Technology. $0.73 billion (up)

This covers new technology development in and for space applications, such as alternative fuels, solar electric propulsion,

Orion at Splashdown

Orion at Splashdown

the life-support system development for Orion, and development of laser communications systems.

Category IV. Exploration. $4.51 billion (up)

This is a big category, because it’s for big stuff, mainly the Orion system, for which the first test flight went so well. Next up is the Exploration Mission, an unmanned trip to the Moon and back. And of course it’s all about The Journey To Mars. The Core MessageAnd a major subcategory is support for the development of commercial spaceflight. Like SpaceX and Boeing.

Category V. Space Operations. $4.00 billion (up)

That’s taking care of what we have up in space: mostly the International Space Station,

NASA's View of the ISS

NASA’s View of the ISS

but also the facilities for support of those space missions, from the satellite fleet that provides tracking to the launch support on the ground.

Category VI. Education. $0.89 billion (down 20%)

Wow. No clear explanation for this, but education funding has been shaved by about 25%. There’re education-related funds under other categories, but this is the core education funding for NASA’s contribution to the Federal plan to support STEM education. That includes Space Grant and programs to get more minority students interested STEM and going on to earn degrees in science and engineering. This is in addition to some education funding budgeted elsewhere, totaling $26.

Category VII. Safety, Security & Mission Services + Construction + Environmental Compliance + the office of the Inspector General. $ 3.25 billion (about the same)

That keeps all the NASA centers operating and takes care of any needed construction work (including environmental clean-up jobs).

We also get a few key bits to ponder:

On average, between 2015 and 2020, we’ve got about 17 launches per year planned, of which about 13 have a science focus.

NASA is taking on a lot of former NOAA stuff, like ozone monitoring, ocean altimetry, and non-defense Earth-observing satellites, leaving just the weather satellites in NOAA’s budget.

But–wait for it–the proposed budget assumes that the venerable Opportunity rover retires this year. Wait. Whaaaat? Oppy has not even hinted at a desire to quit her roving ways. If the “science value” makes sense, then they’ll try to provide funding anyhow.

The Stratospheric Observatory for Infrared Astronomy (la bella osservatoria in volo, SOFIA) is fully funded in this budget request (last year, it wasn’t funded, but they got Congress to fund it later on, which kept the airborne observatory flying through fiscal 2015. No need for such machinations in 2016.

The State of Ames

Aaand, for a grand finale we get our very own presentation by Director of Ames S. Pete Worden and Ames CFO Paul Agnew. I’m actually awfully impressed, that this small group gets the attention of these top administrators, when I’m sure they’ve been through a similar session with the “real” media.

Here’s the short version: Director Worden is delighted that the President supports a larger budget for NASA as a whole and happy that Ames is well taken care of in this budget, scoring its own $31 million overall budget increase with no cut in the education budget here. The special favorite is that solid funding for SOFIA, which is what bumps up Ames’ science budget. There’s funding for the CubeSats we saw today and for K-2 (the second-generation Kepler program) to keep ferreting out exoplanets around dwarf stars. And the upcoming new planet-finder TESS is in the works. Ames is on the forefront in reentry systems and several other areas critical to the Orion mission, so those are in well as is the Intelligent Robotics Group. The guys across the street from the Roverscape, the advanced computing group, also have a stable budget for next year.

SOFIA Celebrates Another Year

SOFIA Celebrates Another Year

And they are very pleased that Ames’ own SOFIA is saved for another budget year.

I asked how Ames managed to keep its education budget stable when the agency-wide budget has such big cuts. I got a fuzzy answer, broadly indicating that a center’s education budget is affected by what that center asked for at the agency level, and that Ames has established a steady set of relationships and grants.

Review

OK, just to review.

The requested budget for NASA is $18.5 billion, an increase of about $500 million.

But put this in context. The defense request is $605 billion.

So, NASA is asking for about 3.1% of what the military is asking for, just for current defense purposes, not including taking care of our veterans.

And that’s out of a total budget of $4 trillion.

So the President is asking if it’s OK if he spends 0.04% of our taxes on exploring our solar system, establishing a human presence in space, and using space-based research to find out all kinds of cool stuff that will help people on Earth.

So now we just have to wait and see what happens in Congress.

© 2012-2025 Vanessa MacLaren-Wray All Rights Reserved