Cometary Tales Astronomy & Astrophysics,Blog Check out some astronomy-related videos

Check out some astronomy-related videos

The Pixel Gravity crew are interested in astronomical phenomena outside the computer as well as creating simulations to run.  Check out some of our videos on YouTube:

https://www.youtube.com/watch?v=oUuR-HOxFwQ&feature=g-upl

This one gives you the entire Transit of Venus of 2012 in just ten seconds.  Have a look!

You might also like to read:

Marichka Explains Etheric EngineeringMarichka Explains Etheric Engineering

Explain etherics? Hah!

Nobody can explain etheric engineering. Or the stuff that makes it work: aether.

The best anyone can do is describe aether. To our faulty three-plus-temporal-dimension senses, aether is nothing but a dark brownish fluid. It seems to bubble, giving off flashes well into the UV end of the spectrum.

That’s why one’s advised to wear goggles (or install UV-protective mods if you’re likely to encounter the stuff regularly). Relatively cheap, those. Even I have ’em, and you know what my finances are like! If you get the stuff on you (I strongly advise against it!), it tends to adhere.

так.

Is sticky. You don’t want it stuck to you, trust me.

If aether gets loose, you want to corral it fast. Every compartment at risk of an aether spill (that is, any compartment etheric conduit passes through) should be equipped with an aether net. When deployed, it becomes a fine, gauzy web that attracts aether. Not to worry, it’ll draw off whatever’s stuck to you as well as gather up the globules floating in your face. So, no, it’s not a “net” so much as an “attractor.” I’d be happy to argue semantics with you any day.

Don’t get in my face about why it’s pronounced ay-ther in Standard. Open your chem reference, search for (C2H5)2O, and shut up already.

A swril of orange with a black ball at the core, and a bright blue jet

Aether’s the stuff that wormholes tunnel through. So no surprise that aether’s about as safe to play with as your average gravitational singularity. Aether is all places at once. That is, it knows only one where and one when.

The aether in the conduits of my ship is the aether flowing in yours. That’s why our comms people can talk to each other in real time. That’s why skipships don’t get lost, navigating the galactic byways, why the big ships that barge through gate-boosted wormholes don’t crush us as they pass. We’re all floating in the same ocean of aether.

There are…entities…out there who can perceive and manipulate aether directly. Some of them invented devices that make use of it. We lesser beings—humans, our allies, our enemies, our uncanny neighbors—have taken it on ourselves to copy those devices. Nobody knows what happens when you make a mistake copying Ancient etheric devices.

Nobody knows, because nobody comes back from those experiments. I like to think they’re gently transported to a parallel universe, given a kindly lecture on interfering with things they know not of, and sent off to some alt-universe pastoral countryside to learn…I dunno, painting, country dance, noveling, harmless little hobbies.

It’s nicer to imagine that than the alternative. Aether is dangerous stuff. A seemingly innocuous ball of cute fizzy brown goo can happily float straight through your ship’s hull. Try breathing vacuum sometime. Not fun. Not fun at all, no matter how well trained your crew is or how good your mods are.

And that’s just for starters.

So take it from me: don’t mess with aether without proper training. Even then, keep all the tools you might need right handy. You never know when you might need them.

Image Credits:

  1. Detail from cover of “Coke Machine,” by Niki Lenhart.
  2. Artist’s depiction of a black hole at the center of a galaxy. NASA/JPL-Caltech. (Modified for effect)

In certain portions of this timeline, Marichka Zelenskyy (no relation) may be found fixing things at the Truck Stop at the Center of the Galaxy. In other portions of the timeline, she is busy elsewhere.

On Aisle 42, Universe Components: One Will Make You SmallerOn Aisle 42, Universe Components: One Will Make You Smaller

 

Or

A Top-Down Search for the Strange Charm of Putting Up With Those Quarks at Bottom of the Universe

For part two of our universe-construction project, while the helium models dry, it’s time to delve into the depths of the sub-sub-atomic universe.

Consider those carefully-constructed model atoms.   Each contains protons, neutrons, and electrons.

As it turns out, with electrons, there are (so far as physics can determine at present) no smaller particles needed to build an electron.  Electrons are part of a group of  six elementary particles called leptons.  Some of these leptons–the neutrinos–were predicted to not even have any mass, but experiments have shown that while they are incredibly low-mass, neutrinos do have some mass.  Interestingly, these experiments leading to even more new developments in fundamental physics and the Standard Model theory.  Still, electrons are by far the most numerous leptons (at least in our corner of the multiverse.)

In our candy-based model, we have more than one proton crammed into in a nucleus.  Each of those protons has a positive charge, but we all know that objects with the same charge repel each other.  Why does the nucleus stay together?

In our model, of course, there is all that sticky candy.  But in the real atom, there is also something that, in its own way, makes protons stick together.  These other particles are one type of another class of matter, called mesons.  These strange, essential, particles are stable only inside the nucleus, where (like our sticky marshmallows) they act as a “glue” to hold protons and neutrons close together.

Given that extremely tiny leptons have been observed, as well as tiny mesons inside the nucleus, protons and neutrons may begin to seem too big to be elementary particles.  Sure enough, it turns out that protons and neutrons are also made of smaller particles.  And those mesons, too, are made of those same even-smaller particles.  And, while it took thirty years to search them all out, a total of six more fundamental particles (on top of the six leptons) have been found.  Most of the matter we know about only requires two of those particles–plus the electron–but modern physics predicted six, and sure enough, there are six of them.

Meet the QUARKS.  Their six kinds are: up, down, charm, strange, top, and bottom.  Each kind comes in a matter form and an antimatter form.

Intriguingly, the terminology for “kinds” of quarks is flavors. Other characteristics of quarks and leptons include color, another clue to the pleasure scientists find in these discoveries.   For now, we’ll experiment with the flavors of quarks.  Unlike real quarks, we will use macroscopic objects that also happen to taste sweet.

As usual, if you’re working with youngsters, begin by reassuring everyone that there will be plenty of time to eat their quarks later.  Each person gets one each of the six flavors of candy…quarks. Because the candies will be handled a lot during the first stage, tell them not to open the wrappers yet.   Observe the candies.  One side has the brand name on it, and the other side is plain.  If we put the candy name-side up, we’ll call it a quark, and if it has the plain side up, we’ll call it an antiquark.

Quark vs Antiquark

A meson is formed by pairs of one quark and one antiquark.  Give the group some time to see just how many combinations can be made of such pairs.  (A few special mesons combine two or three such pairs, in quark combinations.)

A Small Set of Mesons

This will take some cooperation–participants will want to get together and different groups will organize their tests differently.  Meanwhile, if you have access to a whiteboard or poster paper, you can sketch out a list of simple mesons shown below.  For smaller (or older) groups, you can also pass out copies of this grid and let everyone check off the combinations as they are discovered.

quark antiquark candy (name) candy (plain)
bottom eta b b pineapple pineapple
Upsilon b b pineapple pineapple
charmed eta c c purple purple
D+ c d purple peppermint
D0 c u purple red
J/Psi c c purple purple
Strange D c s purple green
Charmed B b c purple pineapple
Kaon0 d s peppermint green
B0 d b peppermint pineapple
Phi s s green green
Strange B s b green pineapple
pion u d red peppermint
kaon+ u s red green
B+ u b red pineapple
Charged rho u d red peppermint
Kaon*+ u s red green

What’s important from this exercise is realizing that all of these two-quark combinations can really happen.  Some of the mesons are the ones that help stick nuclei together.  Others are found in outer space, as cosmic rays.  Others are only found when scientists smash other particles together to find out what they are made of.  Recently, the last of the mesons described by this model was detected by an international team of physicists, using the Large Hadron Collider at CERN, in  Switzerland.  This prompted huge celebrations by physicists and the process inspired a documentary film about the search for the Higgs Boson, Particle Fever.

When I ran this project at BayCon in 2017, one of the young participants scanned the list above and said, “What about the top quark?”  Trust a science-fiction fan to spot an anomaly.  Indeed, none of the known mesons make use of the top quark, which is the most elusive one of all, and in some ways the most peculiar.  The top quark is extremely unstable–even more ephemeral than the strange, charm, and bottom quarks–and it requires a large particle accelerator to observe one. (Fermilab managed it first; now CERN‘s Large Hadron Collider holds the record.)  Even then, once produced, a top quark vanishes in 1/1,000,000,000,000,000,000,000,000th of a second.  The top quark is also amazingly massive, fueling the deep interest in the nature of mass itself, which many think is one of the functions of the Higgs boson, which itself has only recently been (tentatively) observed.  Scientists at CERN hope to use the relatively massive top quark as a test laboratory to verify their (provisional) Higgs boson observations.

Three-quark particles are called baryons–the most common of these are protons and neutrons.  The next step for our own quark exploration is to find the combination of up and down quarks that yields the proton and the one that forms a neutron.   Each person has 2 peppermint and 2 of one other color to play with. Each group can also pool resources (still keeping those candy wrappers on) to mix and match groups of three using only 2 colors of candy.

To sort out which of these combinations works requires one extra piece of information.  We know that an electron has a charge of -1, a proton has a charge of +1, and a neutron is neutral, with a charge of zero.   Another cool feature of quarks…and one of the hardest things their discoverers had to come to terms with…is that they have fractional charges.  Before quarks, everyone used to think of a charge…equal to the electric charge of an electron…as an indivisible thing.  Just like an atom.  But just as it has turned out that atoms aren’t indivisible, neither is charge.

Up quark’s charge:       +2/3

Down quark’s charge:   -1/3

So, with just a little arithmetic, we can find out which of our combinations makes a proton and which makes a neutron.  Here’s the cheat sheet:

uuu

2/3 + 2/3 + 2/3 = 2

Positive…but too much for a proton
ddd

(-1/3) + (-1/3) + (-1/3) = -1

Negative, so it can’t be a proton or a neutron.

Note:  it’s not an electron either–remember, an electron is already an elementary particle.

uud

or udu

or duu

2/3 + 2/3 + (-1/3) = 1

OK!  It’s a proton!
(Just a reminder…the order the quarks are listed in doesn’t matter.)
ddu

or dud

or udd

-1/3 + (-1/3) + 2/3 = 0

Yes!  We have discovered the neutron!

 

Aha, it’s a proton.

Aha, It’s a neutron!

So, the charge calculations show that protons and neutrons are made of two ups plus one down for a proton and two downs plus one up for a neutron.

It’s possible to have participants glue their protons and neutron quark groups together.  A dip on the water cup from the atomic marshmallow project will make a candy piece sticky.  However, these sticky messes will need to sit aside for a while to dry.  If your participants include young children, you might want to skip that possibility, as a glued-up stack of Life-Savers could be a choking hazard.

Speaking of glue, the same BayCon2017 participants also suggested some ideas for incorporating gluons into our model.  To cover the topic of quantum chromodynamics would be a fun challenge, but for the present, those lonely orange LifeSavers we’d set aside as those transient top quarks can be added between the red and white candies in our proton and neutron models to represent the color exchanges among the quarks.

So now we have established that everything in matter is made of tiny (and flavorful) points of dancing energy called quarks and leptons. How can we visualize the true relative sizes of these quarks, protons, nuclei, and atoms?

Poke a pin through a piece of paper and hold it up to the light, then pass it around, so everyone can see how tiny that hole is.   Think of that bright speck as an electron or a quark.  To be at the same scale, our helium nucleus would be about 3 feet across.  A handy meter-stick or yardstick will provide a sense of scale, but for drama, bring out a huge balloon (the 36-inch size).  It won’t be edible, but it will be fun to play with afterwards.  If that big old balloon is the tiny nucleus, then to build a whole helium atom we’d need a marshmallow about seven miles (ten kilometers) across!

So let’s check back on our atom model from the atomic marshmallow project.  It’s mostly nothing, just that airy, fluffy marshmallow.  Remember how thin the “shell” of the electron cloud is, and how surprisingly hard it is to notice the tiny nucleus once the two little protons and neutrons were placed inside.  Even so, in our model, the protons and neutrons are huge compared with the atom.  Imagine how fantastic the resulting candy treat would be–and how many people could enjoy it–if we’d tried to make this marshmallow atom model to scale.

2021 Final Roundup2021 Final Roundup

I promised a post on my so-called accomplishments of the past year. It’s a decent exercise, especially when the year ahead looks so daunting. I’ve had to slap some provisional titles on works in progress, but that’s part of the fun. So, without further ado:

Fabulous AccomplishmentWhat Bit of Writing It Has to Do With
One short story published in an SFF market, both digital and printParrish Blue
Finished first revision cycle with Wind and Smoke, divided the work, and completed second round revision with Volume 1.Wind and Smoke (work in progress)
Finished a two-book entry to my series, revised and submitted Book 1, nearly completed revisions on Book 2Shadows of Insurrection (submitted)
Fires of Resolution (WIP, in final revisions)
Talked a regular reader into reading the first two volumes of Lidian’s Promise, made decisions on updates needed to go to market.A Sorcerer in Levoigne (WIP)
Strangers in Almadina (WIP)
Wrote, revised, and had a short story published in an anthology, PLUS experienced having that story nominated for the Pushcart Prize.“Heart’s Delight” (anthologized in Fault Zone: Reverse)
Wrote, revised, advocated for, and had published a neurodivergent short story.“Reunion” (anthologized in Fault Zone: Reverse)
Wrote, revised, and had accepted a middle-grade SF novella for a shared-universe collectionThe Smugglers (planned for mid-2022)
Wrote, revised, performed, and had accepted a humorous short story for a shared-universe collection“Coke Machine” (planned for spring 2022)
Submitted multiple entries to the California Writer’s Club (CWC) SF Peninsula Chapter’s Literary Stage competition, won awards for opening chapter for a diverse-characters novel, a humorous madcap short story, a structured poem (a sestina), and a short story.A Sorcerer in Levoigne (Chapter 1), “Coke Machine,” “Trap” (poetry), “Solitary Dances”
Note: the contest does not involve publication, but awards are listed on the SF Peninsula Chapter website.
Launched a newsletter and published the first eleven monthly issues (Twelfth issue came out in January 2022.)Tales from the Oort Cloud
What do you mean? You haven’t subscribed yet? EZ box on this page. Pop-up roaming the page. Link in the title and right here. Go for it. You won’t be sorry.
Attended the Nebula Awards Conference online(I’ve volunteered to help at the 2022 conference.)
Served on four panels at Octocon, the Irish National Science Fiction ConventionModerated a panel on the isekai subgenre in anime, and another on global optimistic futures, took part in an improv panel (Orbital Tidy Town Committee), and a science panel on energy futures
Volunteered a full schedule at WorldCon virtualHosted Kaffeklatsches, monitored panels, teched a publishing workshop.
Performed a reading with Strong Women, Strange WorldsAll That Was Asked
No video, but similar to a reading on Fairy Princess Lolly‘s livestream program last year.
Performed a reading on Fairy Princess Lolly’s livestream series, Author Reads“Parrish Blue”
Part of a longer program. You’ll find this reading at T= 53:47 in the video.
Became board-adjacent on SF-Pen chapter of CWC as runner of open micsFourth Tuesday open mics
Provided a second year of tech support for the South Bay Writers chapter of CWCOpen mics on First and third Fridays
Updated my website, with a proper landing page, the blog in its own territory, and space for appearances.Cometary Tales (you are here!)
Increased my vast followership on Twitter (hahaha)Up to 241 for Cometary Tales and
204 for Pixel Gravity
Sold some copies of my book!“Some” is as close as you’re going to get to a number, here.
Also: racked up several agent rejections, practiced pitches and studied statistics of twitter pitch contests, and wrote four (count ’em! FOUR!) blog posts!Tally Ho!

I should note that at each of the open mics I manage, I also take part, sharing excerpts from works in progress as well as poetry and related works.

I’ve also been diligent at showing up for my critique partners and my non-critique writing group, even if I can’t be there in person. That boils down to 10-12 hours a week of reviewing colleagues’ work, accepting notes on my work, and discussing craft and our work together in online meetings.

© 2012-2025 Vanessa MacLaren-Wray All Rights Reserved