Cometary Tales All That Was Asked,Blog What’s with the weird words?

What’s with the weird words?

Translations In the Real World
(Photo by Tflanagan at KSU, Saudi Arabia,
Creative Commons CC BY-SA 3.0)

One of the first things people ask me when they read certain of my stories is “What’s the right way to pronounce all these weird words?”  My stock answer is:  “However you like! It’s all made up, whatever sounds right inside your head is fine by me.”

Starting the process of doing an audio book for All That Was Asked has forced me to face the fact that, well, really there is a “right” way.  For one thing, the story centers on language–in fact, the working title of the book was “Translations by Ansegwe.” In general, for the stories where I have a made-up culture with their own language or an “evolved” culture that’s grown from more-or-less familiar cultures but uses a language other than English as their root language, I do know how those words should be pronounced. I’m that wonky sort that blows off an entire afternoon at Worldcon to attend a linguistics workshop, so, well, that’s where I’m coming from. 

In the real world, I know French pretty well, I watch a lot of foreign-language TV (though of course I’m relying on subtitles), I live in place where I hear Spanish and Russian regularly, and I have technical-world acquaintances with a great variety of language “homes” from India to Europe to Africa to both Chinas.  I’ve struggled to learn a smattering of my culture-base language–Gaelic. And I grew up being hauled around to various places in the U.S. and England.  I even still “hear” (and alas for spell-checkers, spell) most English as Brit-style.  End result:  I love the interplay of languages and the way everyone talks. I do not claim to be a polyglot, but I’m a diligent researcher and I just love all those sounds.

In my writing, most of the problematic words are names, because I think of such stories as having been “translated” from the alien/alternate history language set.  Names tend to get left over after a translation, because even if I’m translating a story from French to English, I wouldn’t change “Tourenne” to “Terence” or “Gervais” to Gerald, because a) the names aren’t really the same and b) the sounds of names add the flavor of a language without requiring a reader to actually know a foreign tongue directly. Spoiler? My current work-in-progress has characters named Tourenne and Gervais, and they live in a francophone culture that doesn’t exist anywhere in the real world.

In the made-up language base for All That Was Asked, I have lots of names for people, place-names from more than one country in the alternate-universe world, and a few name-based terms.  (The academic types in the story have dreams of winning their version of the Nobel prize, so they talk about it a lot.  The Nobel prize is named for a person, but . . . it’s a thing.)  I wanted the central names to make sense, to have relateable sounds, and to have some commonalities.  For instance, in English we have a lot of names that end in ‘-y’.  I selected some sound elements that would fit into different names and tried to make them sound like they came from a distinct self-contained culture–except for a few names I made up specifically to sound like another culture, in the same world. 

I decided on a family-personal naming order that made sense for the culture–Family first, Personal second, and most people refer to each other and address each other by their personal names, because everyone knows what family everyone else belongs to.  And I made names longer than we’re used to in English.  In our culture “power names” tend to be short, in theirs, most people have multisyllable names, and powerful people tend to have longer names.

For other sets of words in this story, ones that are “translated” to English, I “hear” the words in British/European English rather than American English, because that fits better with the social style of the people and gives it a little bit of distance for American readers.  It may sound really fussy–especially for such a short little book–but I think having a clear auditory sense going into it helped me with building the alien culture.  I just have to hope it carries through to readers and listeners–not a burden to cope with but an added feature of the story.

In my next post, I’ll give you a blow-by-blow pronunciation guide for All That Was Asked, with a few background bits to liven it up a bit.

You might also like to read:

Walking to Pluto: Step 3Walking to Pluto: Step 3

Step 3: Making the Journey

If you skipped Part 1, then you need to know know that in this activity, you will build a scale model of the Solar System as far as Pluto. You will use familiar objects and easy, approximate measurements—mostly simply pacing off distances. This is not a project about being extremely precise; the goal is to develop a strong perception of just how big the solar system is and how small the planets are within that system.

For preparation, you need only to assemble the collection of properly-sized objects listed in the requirements table (See Step 2) and print out the “cheat sheet” you’ll carry on the Walk. A glance at a map of your local area will help you decide which way to take your expedition and to identify some landmarks to stand in for more-distant things like the far edge of the Oort Cloud.  To build your own interest and enjoy some discoveries of your own, check out some of the links I’ll include in the references section (Step 4).

You can feel free to substitute alternate model planets, using the scaled sizes as a guide; however, most of the items called for can be found in an average family home, borrowed from classroom parents, or purchased at a very modest outlay. While modern kids may not find the contents of kitchen spice jars terribly fascinating, using an allspice or peppercorn seed as your “Earth” model will give them a lifelong reference point–they’ll be smelling pumpkin pie or watching a chef grind pepper and that spark of memory will remind them of this project.

Because the scaled planets range from the size of a pin point to the size of a jacks ball, it also makes sense to attach each object to something larger, such as an inverted cup or a 4 by 6 index card. If you have access to sports equipment, the bright-colored cones often used for laying out a temporary playing field are helpful. You can position the planet-holder and also tape a “Please Leave Our Experiment Here” sign to the top of the cone. And the bright colors and signs help the explorers to look back and spot the distant planets. Again, be creative! There is no need to run out and buy sports equipment—any handy rock or a brick will do to keep your objects and notes in place.

Here's my Walk kit, ready to go.

Here’s my Walk kit, ready to go.

When reviewing the Cheat Sheet, you’ll see that this model describes our solar system as far as the outer edge of the Oort Cloud. However, to go all the way to the Oort Cloud in this model is a journey of 75 miles (100 km), so don’t expect to travel that far. Instead, as part of your preparation, identify a few local landmarks 1 or 2 miles from your start point and also pick some regional and further-off destinations to match the scaled distances for such key locales as the Oort Cloud, the heliopause, the estimated positions of the Pioneer and Voyager spacecraft, the far edge of the Kuiper belt, and our further neighbors in the Universe. If you’re too short on time, the Cheat Sheet includes some general destinations, but your own localized ones will be much more meaningful to the group. If your group won’t have time to walk all the way to Pluto, find out where Pluto would be in that locale and point ahead to that location before you do turn back.

Once in the classroom, before launching your exploratory mission, start with a quick review of the concept of scale. Regardless of your target age group, toys which are also scale models of cars or airplanes or trains are helpful examples. Quickly walk through a sample of numerical proportions to give a sense of how it goes when you are creating your own scale model: for instance, sketch on the board or a sheet of poster paper a rough scale drawing of the classroom room at 1 inch per foot (5 cm per m). Rather than slowing down the project with extra work, prepare for this session by making your own rough measurements of the classroom dimensions in advance—simply pace off the length and width and note any additional features to the room. Remember, the idea is to illustrate your point, not to create an architectural drawing.

Moving on to the Solar System, start with the Sun…an 8-inch-diameter playground ball or an ordinary soccer ball fits our scale. Ask if anyone can guess what size the Earth should be to go with this “Sun”. The guesses are very likely to be way off, because most “models” used in classrooms and the pictures in the textbooks are not at all to scale. In those, Earth is shown as a recognizable ball appearing as much as a tenth the size of the Sun.

Once you have a few guesses on record, share the key data. Write on the board or a flip chart as you go, to keep the presentation lively. (Nothing kills attention like a PowerPoint!) The Sun’s diameter is about 800,000 miles (1400 thousand km), and we’re using an 8-inch (18 cm) ball, so each inch stands for 100,000 miles (or, a cm stands for 75,000 km). The Earth’s diameter is only 8,000 miles (12,700 km). So how big will the model Earth be? It turns out we need something less than 1/10th of an inch across, only 0.08 inches (0.17 cm). So now you can pass around your “Earth”…a peppercorn will work, so will an allspice seed. (And, yes, you can get away with crumbling up a bit of paper and claiming it’s a spitwad you found.) If you have a spice-jar worth of seeds, everyone can have their own Earth to keep. Let the students take a moment to actually compare the sizes of Earth and Sun. It’s a dramatic difference, nothing like what their textbooks show.

Now it’s time to figure out where the Earth and Sun should be to fit in with this scale. Start by inviting students to guess…they will likely assume you can fit the Earth-Sun model easily inside the room. So now, add the distance data they need and we can “step” through the necessary calculation:

  • The Earth is roughly 93 million miles (150 million km) from the sun.
  • In our scale model, that’s 930 inches (2000 cm)
  • or 78 feet (20 m),
  • or 39 steps of about 2 feet (40 steps of 0.5 m)

Notes:

  • In our model we’re using a pace distance reasonably close to the average woman’s step length and not too far off the step length of a child who is supposed to be walking but can’t resist running. If your group is adult men or tall women, you can use the worksheet to adjust the number of steps accordingly.
  • Our scale in SI (Système international, or metric) is slightly different than in English units, so that those using the SI version can also use simple round figures.

At this point, try to keep a straight face while pretending to start building the model inside the classroom. Dramatically place the “Sun” at one end of the room and try to pace off 39 or 40 steps. Unless you’re doing this activity in a large lecture hall or a cafeteria, you will quickly run out of space (pun intended). By now, it should be clear to the students that this is to be an outdoor activity.

If the group is not too insanely anxious to get outdoors, you can take one more minute to assemble a part of the model which will fit in the room—the Earth-Moon system. Our Moon is nearly ¼ the diameter of Earth, so it’s actually an important body in its own right. And it’s close by. In our scale model, the Moon—which can be represented by a single nonpareil or cake “décor” candy—is 2 3/8” or 5 cm from Earth—so Earth & Moon can be stuck to a card or piece of paper. Keep in mind that if your group is too anxious to get outside, you can choose to save this step for your arrival at the Earth’s position in the model outside.

Earth and Moon are stuck together

Earth and Moon are stuck together

Set the very few ground rules for the mission plan. The model is built by counting steps—the students will be the ones to do the counting and you (the project leader) will expect them to try hard and in return will not be too fussy about precision or how the measurement accuracy may be affected when leadership shifts from short to tall students.   The group will remain cohesive, so no-one misses out on any important discoveries—and no one will charge ahead lest they get “lost in space”. And everyone should understand the time constraints.

When the group is large, I’ve had success assigning small subgroups to accompany one adult leader as the “vanguard” to each planet, leaving the rest behind until they have “landed,” then allowing the followers to run full-speed to catch up. If you do this, it’s important to ensure everyone has a turn to be in the vanguard at least once. If the students have been studying the planets, the vanguard students can also be asked to provide just a few key bits of information to the other explorers as features they have “discovered” about the planet they just reached. However, resist the urge to turn each stop into a seminar—the goal is to travel as far as possible across the system quickly enough to return before class time ends.

Remind the group that it’s a long walk across the solar system and then get started for real. Carry your Sun to a central location outside. If you can park Sol near a tall landmark (such as a flagpole), you’ll find it easier to point back to the “center of the Solar System” as you move further away. Take your Cheat Sheet in hand (the page from the resource kit listing your step-off distances) and read out the number of steps from the sun to Mercury. Send the Mercury explorer team ahead to place Mercury in its position, and quickly join them with the rest of the group. If the vanguard has some cool facts to share about Mercury, give them time to speak. And move on to Venus and the rest of the inner planets.

The asteroid belt portion is the first region containing many objects. If you pause at Ceres, the biggest dwarf planet in the inner Solar System, it helps reduce the stigma of Pluto being “only” a dwarf planet. The fun part in these “belt” regions is to pretend to dodge the small asteroids or other objects—while you may mention that there really isn’t any significant risk of running into an asteroid, that is no reason to turn down the chance to pretend you’re in a crowded mess of obstacles just like in the movies. Even Neil deGrasse Tyson, in his reboot of Cosmos, includes a sequence in which his Ship of the Imagination zigs and zags through, first, a crowded Asteroid Belt and later a densely-packed Oort Cloud.

If time is short or you are working with younger children, it is reasonable to make it to Jupiter (don’t forget to dodge the asteroids on the way out) point out roughly where the outer planets, Pluto, and the further objects would be found and then head back to Earth.

In any case, carry some ordinary first-aid supplies and be sure to have extra adults on hand to slow down those who want to jump to lightspeed. Don’t worry if you don’t have a straight route to use…twisting and turning your way around the streets of a neighborhood is equally impressive. If time will permit, participants can bring lunches and picnic in the Kuiper Belt before returning. And remember, as you return to collect the planet models, it is just as fun to rediscover the distances on the way back.

 

 

 

Marichka Will Fix ItMarichka Will Fix It

Ever since my story “Coke Machine” came out, I’ve been feeling pressure to share more about life in the Truck Stop Universe. Marichka, of course, is the talented engineer who’s at the center of that story.

Just to be clear, she’s not too enamored of rule books.

Here are some rules she knows about that perhaps you’re not aware of. I’m not sure you’ll want to follow her example.

Do NOT criticize the formatting of the Handbook for SkipShip Operators. It has to be cute or nobody will even open the thing. Do NOT mistake cuteness for mild, gentle, tentative advice.

RULES FOR INCURSIONS BY GOD-LIKE ALIENS

  1. DO NOT ENGAGE
    • All interaction is engagement.
    • (Worship is engagement.)
    • Do NOT do what they tell you to do
    • Do NOT accept “assistance”
    • Do NOT accept gifts
  2. OBSERVE AND TAKE NOTES
    • Do NOT allow the entity to know you are observing
    • Keep all communication lines open to your shipmates
    • Compare notes with your shipmates
    • Do NOT attempt to reconcile notes; Notes will never agree
  3. REPORT ALL INCURSIONS TO AUTHORITIES
    • Surrender all information or objects acquired
    • Erase all records of the encounter
    • By NO MEANS tell anyone else
    • Oh, my god, do NOT tell everyone
  4. DO NOT FOLLOW ALIEN TO ITS BASE OF OPERATIONS
    • Leave that to the experts
    • Absolutely, don’t do this
    • Don’t even imagine doing this
    • Don’t believe any suggestions the alien has what you want there

On Aisle 42, Universe Components: One Will Make You SmallerOn Aisle 42, Universe Components: One Will Make You Smaller

 

Or

A Top-Down Search for the Strange Charm of Putting Up With Those Quarks at Bottom of the Universe

For part two of our universe-construction project, while the helium models dry, it’s time to delve into the depths of the sub-sub-atomic universe.

Consider those carefully-constructed model atoms.   Each contains protons, neutrons, and electrons.

As it turns out, with electrons, there are (so far as physics can determine at present) no smaller particles needed to build an electron.  Electrons are part of a group of  six elementary particles called leptons.  Some of these leptons–the neutrinos–were predicted to not even have any mass, but experiments have shown that while they are incredibly low-mass, neutrinos do have some mass.  Interestingly, these experiments leading to even more new developments in fundamental physics and the Standard Model theory.  Still, electrons are by far the most numerous leptons (at least in our corner of the multiverse.)

In our candy-based model, we have more than one proton crammed into in a nucleus.  Each of those protons has a positive charge, but we all know that objects with the same charge repel each other.  Why does the nucleus stay together?

In our model, of course, there is all that sticky candy.  But in the real atom, there is also something that, in its own way, makes protons stick together.  These other particles are one type of another class of matter, called mesons.  These strange, essential, particles are stable only inside the nucleus, where (like our sticky marshmallows) they act as a “glue” to hold protons and neutrons close together.

Given that extremely tiny leptons have been observed, as well as tiny mesons inside the nucleus, protons and neutrons may begin to seem too big to be elementary particles.  Sure enough, it turns out that protons and neutrons are also made of smaller particles.  And those mesons, too, are made of those same even-smaller particles.  And, while it took thirty years to search them all out, a total of six more fundamental particles (on top of the six leptons) have been found.  Most of the matter we know about only requires two of those particles–plus the electron–but modern physics predicted six, and sure enough, there are six of them.

Meet the QUARKS.  Their six kinds are: up, down, charm, strange, top, and bottom.  Each kind comes in a matter form and an antimatter form.

Intriguingly, the terminology for “kinds” of quarks is flavors. Other characteristics of quarks and leptons include color, another clue to the pleasure scientists find in these discoveries.   For now, we’ll experiment with the flavors of quarks.  Unlike real quarks, we will use macroscopic objects that also happen to taste sweet.

As usual, if you’re working with youngsters, begin by reassuring everyone that there will be plenty of time to eat their quarks later.  Each person gets one each of the six flavors of candy…quarks. Because the candies will be handled a lot during the first stage, tell them not to open the wrappers yet.   Observe the candies.  One side has the brand name on it, and the other side is plain.  If we put the candy name-side up, we’ll call it a quark, and if it has the plain side up, we’ll call it an antiquark.

Quark vs Antiquark

A meson is formed by pairs of one quark and one antiquark.  Give the group some time to see just how many combinations can be made of such pairs.  (A few special mesons combine two or three such pairs, in quark combinations.)

A Small Set of Mesons

This will take some cooperation–participants will want to get together and different groups will organize their tests differently.  Meanwhile, if you have access to a whiteboard or poster paper, you can sketch out a list of simple mesons shown below.  For smaller (or older) groups, you can also pass out copies of this grid and let everyone check off the combinations as they are discovered.

quark antiquark candy (name) candy (plain)
bottom eta b b pineapple pineapple
Upsilon b b pineapple pineapple
charmed eta c c purple purple
D+ c d purple peppermint
D0 c u purple red
J/Psi c c purple purple
Strange D c s purple green
Charmed B b c purple pineapple
Kaon0 d s peppermint green
B0 d b peppermint pineapple
Phi s s green green
Strange B s b green pineapple
pion u d red peppermint
kaon+ u s red green
B+ u b red pineapple
Charged rho u d red peppermint
Kaon*+ u s red green

What’s important from this exercise is realizing that all of these two-quark combinations can really happen.  Some of the mesons are the ones that help stick nuclei together.  Others are found in outer space, as cosmic rays.  Others are only found when scientists smash other particles together to find out what they are made of.  Recently, the last of the mesons described by this model was detected by an international team of physicists, using the Large Hadron Collider at CERN, in  Switzerland.  This prompted huge celebrations by physicists and the process inspired a documentary film about the search for the Higgs Boson, Particle Fever.

When I ran this project at BayCon in 2017, one of the young participants scanned the list above and said, “What about the top quark?”  Trust a science-fiction fan to spot an anomaly.  Indeed, none of the known mesons make use of the top quark, which is the most elusive one of all, and in some ways the most peculiar.  The top quark is extremely unstable–even more ephemeral than the strange, charm, and bottom quarks–and it requires a large particle accelerator to observe one. (Fermilab managed it first; now CERN‘s Large Hadron Collider holds the record.)  Even then, once produced, a top quark vanishes in 1/1,000,000,000,000,000,000,000,000th of a second.  The top quark is also amazingly massive, fueling the deep interest in the nature of mass itself, which many think is one of the functions of the Higgs boson, which itself has only recently been (tentatively) observed.  Scientists at CERN hope to use the relatively massive top quark as a test laboratory to verify their (provisional) Higgs boson observations.

Three-quark particles are called baryons–the most common of these are protons and neutrons.  The next step for our own quark exploration is to find the combination of up and down quarks that yields the proton and the one that forms a neutron.   Each person has 2 peppermint and 2 of one other color to play with. Each group can also pool resources (still keeping those candy wrappers on) to mix and match groups of three using only 2 colors of candy.

To sort out which of these combinations works requires one extra piece of information.  We know that an electron has a charge of -1, a proton has a charge of +1, and a neutron is neutral, with a charge of zero.   Another cool feature of quarks…and one of the hardest things their discoverers had to come to terms with…is that they have fractional charges.  Before quarks, everyone used to think of a charge…equal to the electric charge of an electron…as an indivisible thing.  Just like an atom.  But just as it has turned out that atoms aren’t indivisible, neither is charge.

Up quark’s charge:       +2/3

Down quark’s charge:   -1/3

So, with just a little arithmetic, we can find out which of our combinations makes a proton and which makes a neutron.  Here’s the cheat sheet:

uuu

2/3 + 2/3 + 2/3 = 2

Positive…but too much for a proton
ddd

(-1/3) + (-1/3) + (-1/3) = -1

Negative, so it can’t be a proton or a neutron.

Note:  it’s not an electron either–remember, an electron is already an elementary particle.

uud

or udu

or duu

2/3 + 2/3 + (-1/3) = 1

OK!  It’s a proton!
(Just a reminder…the order the quarks are listed in doesn’t matter.)
ddu

or dud

or udd

-1/3 + (-1/3) + 2/3 = 0

Yes!  We have discovered the neutron!

 

Aha, it’s a proton.

Aha, It’s a neutron!

So, the charge calculations show that protons and neutrons are made of two ups plus one down for a proton and two downs plus one up for a neutron.

It’s possible to have participants glue their protons and neutron quark groups together.  A dip on the water cup from the atomic marshmallow project will make a candy piece sticky.  However, these sticky messes will need to sit aside for a while to dry.  If your participants include young children, you might want to skip that possibility, as a glued-up stack of Life-Savers could be a choking hazard.

Speaking of glue, the same BayCon2017 participants also suggested some ideas for incorporating gluons into our model.  To cover the topic of quantum chromodynamics would be a fun challenge, but for the present, those lonely orange LifeSavers we’d set aside as those transient top quarks can be added between the red and white candies in our proton and neutron models to represent the color exchanges among the quarks.

So now we have established that everything in matter is made of tiny (and flavorful) points of dancing energy called quarks and leptons. How can we visualize the true relative sizes of these quarks, protons, nuclei, and atoms?

Poke a pin through a piece of paper and hold it up to the light, then pass it around, so everyone can see how tiny that hole is.   Think of that bright speck as an electron or a quark.  To be at the same scale, our helium nucleus would be about 3 feet across.  A handy meter-stick or yardstick will provide a sense of scale, but for drama, bring out a huge balloon (the 36-inch size).  It won’t be edible, but it will be fun to play with afterwards.  If that big old balloon is the tiny nucleus, then to build a whole helium atom we’d need a marshmallow about seven miles (ten kilometers) across!

So let’s check back on our atom model from the atomic marshmallow project.  It’s mostly nothing, just that airy, fluffy marshmallow.  Remember how thin the “shell” of the electron cloud is, and how surprisingly hard it is to notice the tiny nucleus once the two little protons and neutrons were placed inside.  Even so, in our model, the protons and neutrons are huge compared with the atom.  Imagine how fantastic the resulting candy treat would be–and how many people could enjoy it–if we’d tried to make this marshmallow atom model to scale.

© 2012-2024 Vanessa MacLaren-Wray All Rights Reserved